改进急诊科就诊风险预测:探索应用患者门户信息的操作效用。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Hanna Kiani, Sohaib Hassan, Julian Z Genkins, Jasmine Bilir, Julia Kadie, Tran Le, Jo-Anne Suffoletto, Jonathan H Chen
{"title":"改进急诊科就诊风险预测:探索应用患者门户信息的操作效用。","authors":"Hanna Kiani, Sohaib Hassan, Julian Z Genkins, Jasmine Bilir, Julia Kadie, Tran Le, Jo-Anne Suffoletto, Jonathan H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Patient portal messages represent a unique source of clinical data due to how they represent the voice of the patient, provide a glimpse into care delivery between episodic synchronous appointments, and capture variations in patient behavior and health literacy. There is little understanding of how to best apply modern natural language processing (NLP) approaches, such as large, pre-trained language models (LLMs), to patient messages. In this study, we aim to explore different approaches in incorporating patient messages into an existing Emergency Departments (ED) visit risk prediction model currently deployed at Stanford Health Care. With the addition of patient message frequencies to the baseline we were able to achieve an improved AUC of .77 and a jump in the F1 score. In future work, we aim to build upon these findings and further test combination models to incorporate features around patient message content, in addition to message frequencies.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"610-619"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099376/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Emergency Department Visit Risk Prediction: Exploring the Operational Utility of Applied Patient Portal Messages.\",\"authors\":\"Hanna Kiani, Sohaib Hassan, Julian Z Genkins, Jasmine Bilir, Julia Kadie, Tran Le, Jo-Anne Suffoletto, Jonathan H Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patient portal messages represent a unique source of clinical data due to how they represent the voice of the patient, provide a glimpse into care delivery between episodic synchronous appointments, and capture variations in patient behavior and health literacy. There is little understanding of how to best apply modern natural language processing (NLP) approaches, such as large, pre-trained language models (LLMs), to patient messages. In this study, we aim to explore different approaches in incorporating patient messages into an existing Emergency Departments (ED) visit risk prediction model currently deployed at Stanford Health Care. With the addition of patient message frequencies to the baseline we were able to achieve an improved AUC of .77 and a jump in the F1 score. In future work, we aim to build upon these findings and further test combination models to incorporate features around patient message content, in addition to message frequencies.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"610-619\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099376/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

患者门户消息代表了临床数据的独特来源,因为它们代表了患者的声音,提供了对偶发性同步预约之间的护理提供的一瞥,并捕获了患者行为和健康素养的变化。对于如何最好地将现代自然语言处理(NLP)方法(如大型预训练语言模型(llm))应用于患者信息,人们知之甚少。在本研究中,我们旨在探索将患者信息纳入斯坦福医疗中心现有急诊科(ED)就诊风险预测模型的不同方法。通过将患者信息频率添加到基线,我们能够将AUC提高到0.77,并在F1评分中实现跳跃。在未来的工作中,我们的目标是在这些发现的基础上进一步测试组合模型,以结合患者信息内容的特征,以及信息频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Emergency Department Visit Risk Prediction: Exploring the Operational Utility of Applied Patient Portal Messages.

Patient portal messages represent a unique source of clinical data due to how they represent the voice of the patient, provide a glimpse into care delivery between episodic synchronous appointments, and capture variations in patient behavior and health literacy. There is little understanding of how to best apply modern natural language processing (NLP) approaches, such as large, pre-trained language models (LLMs), to patient messages. In this study, we aim to explore different approaches in incorporating patient messages into an existing Emergency Departments (ED) visit risk prediction model currently deployed at Stanford Health Care. With the addition of patient message frequencies to the baseline we were able to achieve an improved AUC of .77 and a jump in the F1 score. In future work, we aim to build upon these findings and further test combination models to incorporate features around patient message content, in addition to message frequencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信