PathSAM:通过先进的分割和可解释性增强口腔癌的检测。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Suraj Sood, Jawad S Shah, Saeed Alqarn, Yugyung Lee
{"title":"PathSAM:通过先进的分割和可解释性增强口腔癌的检测。","authors":"Suraj Sood, Jawad S Shah, Saeed Alqarn, Yugyung Lee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Building on the success of the Segment Anything Model (SAM) in image segmentation, \"PathSAM: SAM for Pathological Images in Oral Cancer Detection\" addresses the unique challenges associated with diagnosing oral cancer. Although SAM is versatile, its application to pathological images is hindered by its inherent complexity and variability. PathSAM advances beyond traditional deep-learning methods by delivering superior accuracy and detail in segmenting critical datasets like ORCA and OCDC, as demonstrated through both quantitative and qualitative evaluations. The integration of Large Language Models (LLMs) further enhances PathSAM by providing clear, interpretable segmentation results, facilitating accurate tumor identification, and improving communication between patients and healthcare providers. This innovation positions PathSAM as a valuable tool in medical diagnostics.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1069-1078"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099372/pdf/","citationCount":"0","resultStr":"{\"title\":\"PathSAM: Enhancing Oral Cancer Detection with Advanced Segmentation and Explainability.\",\"authors\":\"Suraj Sood, Jawad S Shah, Saeed Alqarn, Yugyung Lee\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Building on the success of the Segment Anything Model (SAM) in image segmentation, \\\"PathSAM: SAM for Pathological Images in Oral Cancer Detection\\\" addresses the unique challenges associated with diagnosing oral cancer. Although SAM is versatile, its application to pathological images is hindered by its inherent complexity and variability. PathSAM advances beyond traditional deep-learning methods by delivering superior accuracy and detail in segmenting critical datasets like ORCA and OCDC, as demonstrated through both quantitative and qualitative evaluations. The integration of Large Language Models (LLMs) further enhances PathSAM by providing clear, interpretable segmentation results, facilitating accurate tumor identification, and improving communication between patients and healthcare providers. This innovation positions PathSAM as a valuable tool in medical diagnostics.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"1069-1078\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于SAM在图像分割方面的成功,“PathSAM:用于口腔癌检测的病理图像SAM”解决了与口腔癌诊断相关的独特挑战。虽然SAM是通用的,但其在病理图像中的应用受到其固有的复杂性和可变性的阻碍。如定量和定性评估所示,PathSAM超越了传统的深度学习方法,在分割ORCA和OCDC等关键数据集方面提供了卓越的准确性和细节。大型语言模型(llm)的集成通过提供清晰、可解释的分割结果、促进准确的肿瘤识别以及改善患者与医疗保健提供者之间的沟通,进一步增强了PathSAM。这一创新使PathSAM成为医学诊断领域的一种有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PathSAM: Enhancing Oral Cancer Detection with Advanced Segmentation and Explainability.

Building on the success of the Segment Anything Model (SAM) in image segmentation, "PathSAM: SAM for Pathological Images in Oral Cancer Detection" addresses the unique challenges associated with diagnosing oral cancer. Although SAM is versatile, its application to pathological images is hindered by its inherent complexity and variability. PathSAM advances beyond traditional deep-learning methods by delivering superior accuracy and detail in segmenting critical datasets like ORCA and OCDC, as demonstrated through both quantitative and qualitative evaluations. The integration of Large Language Models (LLMs) further enhances PathSAM by providing clear, interpretable segmentation results, facilitating accurate tumor identification, and improving communication between patients and healthcare providers. This innovation positions PathSAM as a valuable tool in medical diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信