Guojun Tang, Jason E Black, Tyler S Williamson, Steve H Drew
{"title":"使用真实世界跨省初级保健数据的加拿大成人联合糖尿病预测","authors":"Guojun Tang, Jason E Black, Tyler S Williamson, Steve H Drew","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating Electronic Health Records (EHR) and the application of machine learning present opportunities for enhancing the accuracy and accessibility of data-driven diabetes prediction. In particular, developing data-driven machine learning models can provide early identification of patients with high risk for diabetes, potentially leading to more effective therapeutic strategies and reduced healthcare costs. However, regulation restrictions create barriers to developing centralized predictive models. This paper addresses the challenges by introducing a federated learning approach, which amalgamates predictive models without centralized data storage and processing, thus avoiding privacy issues. This marks the first application of federated learning to predict diabetes using real clinical datasets in Canada extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) without cross-province patient data sharing. We address class-imbalance issues through downsampling techniques and compare federated learning performance against province-based and centralized models. Experimental results show that the federated MLP model presents a similar or higher performance compared to the model trained with the centralized approach. However, the federated logistic regression model showed inferior performance compared to its centralized peer.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1099-1108"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Federated Diabetes Prediction in Canadian Adults Using Real-world Cross-Province Primary Care Data.\",\"authors\":\"Guojun Tang, Jason E Black, Tyler S Williamson, Steve H Drew\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating Electronic Health Records (EHR) and the application of machine learning present opportunities for enhancing the accuracy and accessibility of data-driven diabetes prediction. In particular, developing data-driven machine learning models can provide early identification of patients with high risk for diabetes, potentially leading to more effective therapeutic strategies and reduced healthcare costs. However, regulation restrictions create barriers to developing centralized predictive models. This paper addresses the challenges by introducing a federated learning approach, which amalgamates predictive models without centralized data storage and processing, thus avoiding privacy issues. This marks the first application of federated learning to predict diabetes using real clinical datasets in Canada extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) without cross-province patient data sharing. We address class-imbalance issues through downsampling techniques and compare federated learning performance against province-based and centralized models. Experimental results show that the federated MLP model presents a similar or higher performance compared to the model trained with the centralized approach. However, the federated logistic regression model showed inferior performance compared to its centralized peer.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"1099-1108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Federated Diabetes Prediction in Canadian Adults Using Real-world Cross-Province Primary Care Data.
Integrating Electronic Health Records (EHR) and the application of machine learning present opportunities for enhancing the accuracy and accessibility of data-driven diabetes prediction. In particular, developing data-driven machine learning models can provide early identification of patients with high risk for diabetes, potentially leading to more effective therapeutic strategies and reduced healthcare costs. However, regulation restrictions create barriers to developing centralized predictive models. This paper addresses the challenges by introducing a federated learning approach, which amalgamates predictive models without centralized data storage and processing, thus avoiding privacy issues. This marks the first application of federated learning to predict diabetes using real clinical datasets in Canada extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) without cross-province patient data sharing. We address class-imbalance issues through downsampling techniques and compare federated learning performance against province-based and centralized models. Experimental results show that the federated MLP model presents a similar or higher performance compared to the model trained with the centralized approach. However, the federated logistic regression model showed inferior performance compared to its centralized peer.