Ziyi Chen, Mengyuan Zhang, Mustafa Mohammed Ahmed, Yi Guo, Thomas J George, Jiang Bian, Yonghui Wu
{"title":"叙事特征还是结构特征?大型语言模型识别心脏衰竭风险癌症患者的研究。","authors":"Ziyi Chen, Mengyuan Zhang, Mustafa Mohammed Ahmed, Yi Guo, Thomas J George, Jiang Bian, Yonghui Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer treatments are known to introduce cardiotoxicity, negatively impacting outcomes and survivorship. Identifying cancer patients at risk of heart failure (HF) is critical to improving cancer treatment outcomes and safety. This study examined machine learning (ML) models to identify cancer patients at risk of HF using electronic health records (EHRs), including traditional ML, Time-Aware long short-term memory (T-LSTM), and large language models (LLMs) using novel narrative features derived from the structured medical codes. We identified a cancer cohort of 12,806 patients from the University of Florida Health, diagnosed with lung, breast, and colorectal cancers, among which 1,602 individuals developed HF after cancer. The LLM, GatorTron-3.9B, achieved the best F1 scores, outperforming the traditional support vector machines by 39%, the T-LSTM deep learning model by 7%, and a widely used transformer model, BERT, by 5.6%. The analysis shows that the proposed narrative features remarkably increased feature density and improved performance.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"242-251"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099403/pdf/","citationCount":"0","resultStr":"{\"title\":\"Narrative Feature or Structured Feature? A Study of Large Language Models to Identify Cancer Patients at Risk of Heart Failure.\",\"authors\":\"Ziyi Chen, Mengyuan Zhang, Mustafa Mohammed Ahmed, Yi Guo, Thomas J George, Jiang Bian, Yonghui Wu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer treatments are known to introduce cardiotoxicity, negatively impacting outcomes and survivorship. Identifying cancer patients at risk of heart failure (HF) is critical to improving cancer treatment outcomes and safety. This study examined machine learning (ML) models to identify cancer patients at risk of HF using electronic health records (EHRs), including traditional ML, Time-Aware long short-term memory (T-LSTM), and large language models (LLMs) using novel narrative features derived from the structured medical codes. We identified a cancer cohort of 12,806 patients from the University of Florida Health, diagnosed with lung, breast, and colorectal cancers, among which 1,602 individuals developed HF after cancer. The LLM, GatorTron-3.9B, achieved the best F1 scores, outperforming the traditional support vector machines by 39%, the T-LSTM deep learning model by 7%, and a widely used transformer model, BERT, by 5.6%. The analysis shows that the proposed narrative features remarkably increased feature density and improved performance.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"242-251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Narrative Feature or Structured Feature? A Study of Large Language Models to Identify Cancer Patients at Risk of Heart Failure.
Cancer treatments are known to introduce cardiotoxicity, negatively impacting outcomes and survivorship. Identifying cancer patients at risk of heart failure (HF) is critical to improving cancer treatment outcomes and safety. This study examined machine learning (ML) models to identify cancer patients at risk of HF using electronic health records (EHRs), including traditional ML, Time-Aware long short-term memory (T-LSTM), and large language models (LLMs) using novel narrative features derived from the structured medical codes. We identified a cancer cohort of 12,806 patients from the University of Florida Health, diagnosed with lung, breast, and colorectal cancers, among which 1,602 individuals developed HF after cancer. The LLM, GatorTron-3.9B, achieved the best F1 scores, outperforming the traditional support vector machines by 39%, the T-LSTM deep learning model by 7%, and a widely used transformer model, BERT, by 5.6%. The analysis shows that the proposed narrative features remarkably increased feature density and improved performance.