自杀企图的大规模文本挖掘提高了电子健康记录中不同自杀事件的识别。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Hyunjoon Lee, Cosmin A Bejan, Colin G Walsh
{"title":"自杀企图的大规模文本挖掘提高了电子健康记录中不同自杀事件的识别。","authors":"Hyunjoon Lee, Cosmin A Bejan, Colin G Walsh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we explore a natural language processing (NLP) algorithm's capacity to identify proximal but distinct suicide attempt (SA) events compared to diagnostic code-based approaches. This study used an NLP algorithm with high precision in identifying SA events, which processes clinical notes for suicide-related text expressions and generates SA outcome relevance scores on mentioned dates. We chart reviewed all SA visit pairs less than 15 days apart. Despite sample size limitations, our NLP method surpassed the code-based model's performance (0.85 [95% CI: 0.74 - 0.92] vs. 0.78 [95% CI: 0.56 - 0.92], p = 0.71). More importantly, NLP detected three times more SA visit pairs <15 days compared to the code-based approach (71 vs. 23), with only 3 overlaps. This study demonstrates NLP's efficacy in identifying distinct SA visit pairs. Given minimal overlap, we suggest leveraging both clinical notes and diagnostic codes for a comprehensive SA event detection.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"648-654"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099434/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large-scale Text Mining of Suicide Attempt improves Identification of Distinct Suicidal Events in Electronic Health Records.\",\"authors\":\"Hyunjoon Lee, Cosmin A Bejan, Colin G Walsh\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we explore a natural language processing (NLP) algorithm's capacity to identify proximal but distinct suicide attempt (SA) events compared to diagnostic code-based approaches. This study used an NLP algorithm with high precision in identifying SA events, which processes clinical notes for suicide-related text expressions and generates SA outcome relevance scores on mentioned dates. We chart reviewed all SA visit pairs less than 15 days apart. Despite sample size limitations, our NLP method surpassed the code-based model's performance (0.85 [95% CI: 0.74 - 0.92] vs. 0.78 [95% CI: 0.56 - 0.92], p = 0.71). More importantly, NLP detected three times more SA visit pairs <15 days compared to the code-based approach (71 vs. 23), with only 3 overlaps. This study demonstrates NLP's efficacy in identifying distinct SA visit pairs. Given minimal overlap, we suggest leveraging both clinical notes and diagnostic codes for a comprehensive SA event detection.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"648-654\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099434/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探索了自然语言处理(NLP)算法与基于诊断代码的方法相比,识别近端但不同的自杀企图(SA)事件的能力。本研究使用了一种高精度的NLP算法来识别SA事件,该算法处理与自杀相关的文本表达的临床记录,并在提到的日期生成SA结果相关分数。我们回顾了间隔小于15天的所有SA访问对。尽管样本量有限,我们的NLP方法仍然超过了基于代码的模型的性能(0.85 [95% CI: 0.74 - 0.92] vs. 0.78 [95% CI: 0.56 - 0.92], p = 0.71)。更重要的是,NLP检测到的SA访问对增加了三倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale Text Mining of Suicide Attempt improves Identification of Distinct Suicidal Events in Electronic Health Records.

In this study, we explore a natural language processing (NLP) algorithm's capacity to identify proximal but distinct suicide attempt (SA) events compared to diagnostic code-based approaches. This study used an NLP algorithm with high precision in identifying SA events, which processes clinical notes for suicide-related text expressions and generates SA outcome relevance scores on mentioned dates. We chart reviewed all SA visit pairs less than 15 days apart. Despite sample size limitations, our NLP method surpassed the code-based model's performance (0.85 [95% CI: 0.74 - 0.92] vs. 0.78 [95% CI: 0.56 - 0.92], p = 0.71). More importantly, NLP detected three times more SA visit pairs <15 days compared to the code-based approach (71 vs. 23), with only 3 overlaps. This study demonstrates NLP's efficacy in identifying distinct SA visit pairs. Given minimal overlap, we suggest leveraging both clinical notes and diagnostic codes for a comprehensive SA event detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信