确保MRI检测轻度认知障碍的公平性。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Boning Tong, Travyse Edwards, Shu Yang, Bojian Hou, Davoud Ataee Tarzanagh, Ryan J Urbanowicz, Jason H Moore, Marylyn D Ritchie, Christos Davatzikos, Li Shen
{"title":"确保MRI检测轻度认知障碍的公平性。","authors":"Boning Tong, Travyse Edwards, Shu Yang, Bojian Hou, Davoud Ataee Tarzanagh, Ryan J Urbanowicz, Jason H Moore, Marylyn D Ritchie, Christos Davatzikos, Li Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1119-1128"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099326/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.\",\"authors\":\"Boning Tong, Travyse Edwards, Shu Yang, Bojian Hou, Davoud Ataee Tarzanagh, Ryan J Urbanowicz, Jason H Moore, Marylyn D Ritchie, Christos Davatzikos, Li Shen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"1119-1128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099326/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)算法在阿尔茨海默病(AD)的早期准确诊断中起着至关重要的作用,这对于有效的治疗计划至关重要。然而,现有的方法并不适合于识别轻度认知障碍(MCI),这是正常衰老和AD之间的关键过渡阶段。这种不足主要是由于MCI分类中不同敏感属性的标签不平衡和偏差。为了克服这些挑战,我们设计了一种端到端的公平感知方法,用于标签不平衡分类,专门为神经成像数据量身定制。该方法建立在最近开发的FACIMS框架上,集成到自动化ML环境streamlined中。我们将我们的方法与其他九种ML算法进行了评估,发现它在具有五种不同敏感属性的分类中优先考虑公平性的同时,达到了与其他方法相当的平衡准确性。这一分析有助于发展公平和可靠的ML诊断的MCI检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.

Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信