使用我们所有人研究项目的基于深度学习的抑郁症和哮喘事件时间分析。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2025-05-22 eCollection Date: 2024-01-01
Xueting Wang, Lucila Ohno-Machado, Jose L Gomez, Wen Gu, Rongyi Sun, Jihoon Kim
{"title":"使用我们所有人研究项目的基于深度学习的抑郁症和哮喘事件时间分析。","authors":"Xueting Wang, Lucila Ohno-Machado, Jose L Gomez, Wen Gu, Rongyi Sun, Jihoon Kim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>While there is a growing recognition of the association between depression and asthma, few studies have leveraged deep learning-based (DL-based) models in a retrospective cohort study with a large sample size. We analyzed the association between depression and asthma among 239,161 participants of the All of Us Research Program through DL-based, logistic regression, and Cox Proportional Hazards (CoxPH) models. We used SHAP values to help interpret DL-based models and c-index to evaluate model performance. Results suggest a significant odds ratio for depression in asthma. The c-indices for the CoxPH, DeepSurv, and DeepHit models were 0.619, 0.625, and 0.596, respectively. SHAP indicated a different set of important variables when compared with the CoxPH model. In conclusion, we provide strong evidence of a positive relationship between depression and asthma. Also, DL-based models did not outperform the CoxPH model on the c-index. Sex at birth and income may play important roles in occurrence of depression in asthma patients.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2024 ","pages":"1186-1195"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-based Time-to-event Analysis of Depression and Asthma using the All of Us Research Program.\",\"authors\":\"Xueting Wang, Lucila Ohno-Machado, Jose L Gomez, Wen Gu, Rongyi Sun, Jihoon Kim\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While there is a growing recognition of the association between depression and asthma, few studies have leveraged deep learning-based (DL-based) models in a retrospective cohort study with a large sample size. We analyzed the association between depression and asthma among 239,161 participants of the All of Us Research Program through DL-based, logistic regression, and Cox Proportional Hazards (CoxPH) models. We used SHAP values to help interpret DL-based models and c-index to evaluate model performance. Results suggest a significant odds ratio for depression in asthma. The c-indices for the CoxPH, DeepSurv, and DeepHit models were 0.619, 0.625, and 0.596, respectively. SHAP indicated a different set of important variables when compared with the CoxPH model. In conclusion, we provide strong evidence of a positive relationship between depression and asthma. Also, DL-based models did not outperform the CoxPH model on the c-index. Sex at birth and income may play important roles in occurrence of depression in asthma patients.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2024 \",\"pages\":\"1186-1195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然人们越来越认识到抑郁症和哮喘之间的联系,但很少有研究在大样本量的回顾性队列研究中利用基于深度学习(基于dl)的模型。我们通过基于dl的logistic回归和Cox比例风险(Cox Proportional Hazards, Cox)模型分析了239161名All of Us研究项目参与者的抑郁和哮喘之间的关系。我们使用SHAP值来帮助解释基于dl的模型,并使用c-index来评估模型的性能。结果显示哮喘患者抑郁的优势比显著。CoxPH、DeepSurv和DeepHit模型的c指数分别为0.619、0.625和0.596。与CoxPH模型相比,SHAP表明了一组不同的重要变量。总之,我们提供了强有力的证据证明抑郁和哮喘之间存在正相关关系。此外,基于dl的模型在c指数上也没有优于CoxPH模型。出生性别和收入可能在哮喘患者抑郁的发生中起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-based Time-to-event Analysis of Depression and Asthma using the All of Us Research Program.

While there is a growing recognition of the association between depression and asthma, few studies have leveraged deep learning-based (DL-based) models in a retrospective cohort study with a large sample size. We analyzed the association between depression and asthma among 239,161 participants of the All of Us Research Program through DL-based, logistic regression, and Cox Proportional Hazards (CoxPH) models. We used SHAP values to help interpret DL-based models and c-index to evaluate model performance. Results suggest a significant odds ratio for depression in asthma. The c-indices for the CoxPH, DeepSurv, and DeepHit models were 0.619, 0.625, and 0.596, respectively. SHAP indicated a different set of important variables when compared with the CoxPH model. In conclusion, we provide strong evidence of a positive relationship between depression and asthma. Also, DL-based models did not outperform the CoxPH model on the c-index. Sex at birth and income may play important roles in occurrence of depression in asthma patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信