Antía González-Vila , Ali Mohammad Ibrahim-Alasoufi , María Luengo-Mateos , Víctor Pardo-García , Alejandro Diaz-López , Belén Fernández-Rodríguez , Matti Poutanen , Claes Ohlsson , Manuel Tena-Sempere , Carlos Diéguez-González , María del Carmen García-García , Olga Barca-Mayo
{"title":"IL-6解码性别和饮食依赖的昼夜节律和代谢节律。","authors":"Antía González-Vila , Ali Mohammad Ibrahim-Alasoufi , María Luengo-Mateos , Víctor Pardo-García , Alejandro Diaz-López , Belén Fernández-Rodríguez , Matti Poutanen , Claes Ohlsson , Manuel Tena-Sempere , Carlos Diéguez-González , María del Carmen García-García , Olga Barca-Mayo","doi":"10.1016/j.molmet.2025.102171","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation and energy metabolism. Its diurnal secretion influences core circadian components, emphasizing its critical role in circadian biology. Despite known sex differences in immune, circadian, and metabolic processes, how IL-6 integrates these processes remains poorly understood.</div></div><div><h3>Methods</h3><div>IL6 knockout (KO) and control mice of both sexes were phenotyped for circadian and metabolic traits under standard (STD) and high-fat diet (HFD), fasting, and time-restricted feeding. Molecular analyses in muscle, liver, and hypothalamus assessed clock gene expression and IL-6 signaling pathway. Circulating sex steroid hormones were quantified to examine their contribution to the observed sex-specific phenotypes.</div></div><div><h3>Results</h3><div>IL-6 deficiency disrupts circadian locomotor and metabolic rhythms in a sex- and diet-dependent manner. Males exhibit impaired light-driven circadian rhythms under STD conditions and metabolic misalignment under HFD, whereas females display greater circadian resilience under STD conditions but increased vulnerability to circadian disruption during HFD. Additionally, IL-6 emerges as a novel regulator of the food-entrainable oscillator (FEO), linking food anticipatory activity and metabolic cycles under both STD and HFD in a sex-dependent manner.</div></div><div><h3>Conclusions</h3><div>These findings identify IL-6 as a critical mediator of circadian-metabolic plasticity, shaping sex- and diet-specific trade-offs between circadian stability and metabolic homeostasis. Our study highlights IL-6 as a potential therapeutic target for mitigating circadian misalignment-associated metabolic disorders, with implications for the timed modulation of IL-6 signaling.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"97 ","pages":"Article 102171"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-6 decodes sex and diet-dependent circadian and metabolic rhythms\",\"authors\":\"Antía González-Vila , Ali Mohammad Ibrahim-Alasoufi , María Luengo-Mateos , Víctor Pardo-García , Alejandro Diaz-López , Belén Fernández-Rodríguez , Matti Poutanen , Claes Ohlsson , Manuel Tena-Sempere , Carlos Diéguez-González , María del Carmen García-García , Olga Barca-Mayo\",\"doi\":\"10.1016/j.molmet.2025.102171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation and energy metabolism. Its diurnal secretion influences core circadian components, emphasizing its critical role in circadian biology. Despite known sex differences in immune, circadian, and metabolic processes, how IL-6 integrates these processes remains poorly understood.</div></div><div><h3>Methods</h3><div>IL6 knockout (KO) and control mice of both sexes were phenotyped for circadian and metabolic traits under standard (STD) and high-fat diet (HFD), fasting, and time-restricted feeding. Molecular analyses in muscle, liver, and hypothalamus assessed clock gene expression and IL-6 signaling pathway. Circulating sex steroid hormones were quantified to examine their contribution to the observed sex-specific phenotypes.</div></div><div><h3>Results</h3><div>IL-6 deficiency disrupts circadian locomotor and metabolic rhythms in a sex- and diet-dependent manner. Males exhibit impaired light-driven circadian rhythms under STD conditions and metabolic misalignment under HFD, whereas females display greater circadian resilience under STD conditions but increased vulnerability to circadian disruption during HFD. Additionally, IL-6 emerges as a novel regulator of the food-entrainable oscillator (FEO), linking food anticipatory activity and metabolic cycles under both STD and HFD in a sex-dependent manner.</div></div><div><h3>Conclusions</h3><div>These findings identify IL-6 as a critical mediator of circadian-metabolic plasticity, shaping sex- and diet-specific trade-offs between circadian stability and metabolic homeostasis. Our study highlights IL-6 as a potential therapeutic target for mitigating circadian misalignment-associated metabolic disorders, with implications for the timed modulation of IL-6 signaling.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"97 \",\"pages\":\"Article 102171\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221287782500078X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221287782500078X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
IL-6 decodes sex and diet-dependent circadian and metabolic rhythms
Objective
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation and energy metabolism. Its diurnal secretion influences core circadian components, emphasizing its critical role in circadian biology. Despite known sex differences in immune, circadian, and metabolic processes, how IL-6 integrates these processes remains poorly understood.
Methods
IL6 knockout (KO) and control mice of both sexes were phenotyped for circadian and metabolic traits under standard (STD) and high-fat diet (HFD), fasting, and time-restricted feeding. Molecular analyses in muscle, liver, and hypothalamus assessed clock gene expression and IL-6 signaling pathway. Circulating sex steroid hormones were quantified to examine their contribution to the observed sex-specific phenotypes.
Results
IL-6 deficiency disrupts circadian locomotor and metabolic rhythms in a sex- and diet-dependent manner. Males exhibit impaired light-driven circadian rhythms under STD conditions and metabolic misalignment under HFD, whereas females display greater circadian resilience under STD conditions but increased vulnerability to circadian disruption during HFD. Additionally, IL-6 emerges as a novel regulator of the food-entrainable oscillator (FEO), linking food anticipatory activity and metabolic cycles under both STD and HFD in a sex-dependent manner.
Conclusions
These findings identify IL-6 as a critical mediator of circadian-metabolic plasticity, shaping sex- and diet-specific trade-offs between circadian stability and metabolic homeostasis. Our study highlights IL-6 as a potential therapeutic target for mitigating circadian misalignment-associated metabolic disorders, with implications for the timed modulation of IL-6 signaling.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.