循环神经元外泌体货物作为库欣综合征神经可塑性的生物标志物。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Marica Pagliarini, Loretta Guidi, Caterina Ciacci, Roberta Saltarelli, Monia Orciani, Marianna Martino, Maria Cristina Albertini, Giorgio Arnaldi, Patrizia Ambrogini
{"title":"循环神经元外泌体货物作为库欣综合征神经可塑性的生物标志物。","authors":"Marica Pagliarini, Loretta Guidi, Caterina Ciacci, Roberta Saltarelli, Monia Orciani, Marianna Martino, Maria Cristina Albertini, Giorgio Arnaldi, Patrizia Ambrogini","doi":"10.1007/s12035-025-05069-z","DOIUrl":null,"url":null,"abstract":"<p><p>The hippocampus is the main target of glucocorticoids (GCs) in the brain since it contains the greatest concentration of the specific receptors. GCs are among the factors modulating adult hippocampal neurogenesis (AHN), which occurs in mammalians, including humans. Prolonged exposure to high GC levels triggers AHN impairment and induces affective and cognitive deficits, consistently with hippocampal neurogenesis functions. Cushing's syndrome (CS) is a rare endocrine disorder characterized by persistently elevated GC levels, namely, cortisol, that also results in affective disorders and impairment of hippocampus-associated memory, suggesting a disruption of hippocampal neurogenesis. Players of adult neurogenesis process, such as Neural Stem/Progenitor Cells and differentiating neuronal cells, release exosomes able to cross brain blood barrier, reaching the peripheral blood. MicroRNAs are known to be selectively enriched in neuronal exosomes and to play a crucial role in adult neurogenesis regulation. The main question addressed in this exploratory study was whether neuroplasticity-related microRNAs (miRNAs), carried by neuronal-derived exosomes in peripheral blood, could reflect alterations in neurogenic processes associated with Cushing's syndrome. Hence, in the present work, we measured the content in selected miRNAs of neuronally derived exosomes in peripheral blood of patients affected by endogenous and active CS and age and sex-matched healthy subjects. The human miRNAs (miR-126, miR-9, miR-223, miR-34a, miR-124a, and miR-146a) were quantified by RT-qPCR. All the miRNAs analyzed were significantly differentially expressed in CS patients as compared to healthy subjects. Our findings support the following: (i) patients with Cushing's syndrome (CS) may exhibit a putative dysregulation of neurogenesis that could underlie the early-onset impairment of affective and cognitive functions; (ii) the exosomal cargo may represent a potential biomarker for monitoring functional and dysfunctional neuroplasticity processes in adult humans. Additional studies are needed to confirm and expand upon the findings across a wider cohort of patients.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circulating Neuronal Exosome Cargo as Biomarkers of Neuroplasticity in Cushing's Syndrome.\",\"authors\":\"Marica Pagliarini, Loretta Guidi, Caterina Ciacci, Roberta Saltarelli, Monia Orciani, Marianna Martino, Maria Cristina Albertini, Giorgio Arnaldi, Patrizia Ambrogini\",\"doi\":\"10.1007/s12035-025-05069-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hippocampus is the main target of glucocorticoids (GCs) in the brain since it contains the greatest concentration of the specific receptors. GCs are among the factors modulating adult hippocampal neurogenesis (AHN), which occurs in mammalians, including humans. Prolonged exposure to high GC levels triggers AHN impairment and induces affective and cognitive deficits, consistently with hippocampal neurogenesis functions. Cushing's syndrome (CS) is a rare endocrine disorder characterized by persistently elevated GC levels, namely, cortisol, that also results in affective disorders and impairment of hippocampus-associated memory, suggesting a disruption of hippocampal neurogenesis. Players of adult neurogenesis process, such as Neural Stem/Progenitor Cells and differentiating neuronal cells, release exosomes able to cross brain blood barrier, reaching the peripheral blood. MicroRNAs are known to be selectively enriched in neuronal exosomes and to play a crucial role in adult neurogenesis regulation. The main question addressed in this exploratory study was whether neuroplasticity-related microRNAs (miRNAs), carried by neuronal-derived exosomes in peripheral blood, could reflect alterations in neurogenic processes associated with Cushing's syndrome. Hence, in the present work, we measured the content in selected miRNAs of neuronally derived exosomes in peripheral blood of patients affected by endogenous and active CS and age and sex-matched healthy subjects. The human miRNAs (miR-126, miR-9, miR-223, miR-34a, miR-124a, and miR-146a) were quantified by RT-qPCR. All the miRNAs analyzed were significantly differentially expressed in CS patients as compared to healthy subjects. Our findings support the following: (i) patients with Cushing's syndrome (CS) may exhibit a putative dysregulation of neurogenesis that could underlie the early-onset impairment of affective and cognitive functions; (ii) the exosomal cargo may represent a potential biomarker for monitoring functional and dysfunctional neuroplasticity processes in adult humans. Additional studies are needed to confirm and expand upon the findings across a wider cohort of patients.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-05069-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05069-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海马是大脑中糖皮质激素(GCs)的主要靶点,因为它含有最多的特异性受体。GCs是调节成人海马神经发生(AHN)的因素之一,发生在哺乳动物中,包括人类。长期暴露于高GC水平会引发AHN损伤并诱发情感和认知缺陷,这与海马神经发生功能一致。库欣综合征(Cushing's syndrome, CS)是一种罕见的内分泌疾病,其特征是GC(即皮质醇)水平持续升高,还会导致情感性障碍和海马相关记忆损伤,提示海马神经发生中断。成人神经发生过程的参与者,如神经干/祖细胞和分化的神经细胞,释放能够穿过脑血屏障到达外周血的外泌体。已知microrna在神经元外泌体中选择性富集,并在成人神经发生调节中发挥关键作用。这项探索性研究的主要问题是,由外周血中神经元来源的外泌体携带的神经可塑性相关的microRNAs (miRNAs)是否能反映与库欣综合征相关的神经发生过程的改变。因此,在目前的工作中,我们测量了内源性和活性CS患者以及年龄和性别匹配的健康受试者外周血中神经源性外泌体中选定的mirna的含量。通过RT-qPCR对人mirna (miR-126、miR-9、miR-223、miR-34a、miR-124a和miR-146a)进行定量。与健康受试者相比,所有分析的mirna在CS患者中的表达均有显著差异。我们的研究结果支持以下观点:(i)库欣综合征(CS)患者可能表现出一种假定的神经发生失调,这可能是早发性情感和认知功能损伤的基础;(ii)外泌体货物可能是监测成年人功能和功能失调神经可塑性过程的潜在生物标志物。需要进一步的研究来证实和扩大在更广泛的患者队列中的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circulating Neuronal Exosome Cargo as Biomarkers of Neuroplasticity in Cushing's Syndrome.

The hippocampus is the main target of glucocorticoids (GCs) in the brain since it contains the greatest concentration of the specific receptors. GCs are among the factors modulating adult hippocampal neurogenesis (AHN), which occurs in mammalians, including humans. Prolonged exposure to high GC levels triggers AHN impairment and induces affective and cognitive deficits, consistently with hippocampal neurogenesis functions. Cushing's syndrome (CS) is a rare endocrine disorder characterized by persistently elevated GC levels, namely, cortisol, that also results in affective disorders and impairment of hippocampus-associated memory, suggesting a disruption of hippocampal neurogenesis. Players of adult neurogenesis process, such as Neural Stem/Progenitor Cells and differentiating neuronal cells, release exosomes able to cross brain blood barrier, reaching the peripheral blood. MicroRNAs are known to be selectively enriched in neuronal exosomes and to play a crucial role in adult neurogenesis regulation. The main question addressed in this exploratory study was whether neuroplasticity-related microRNAs (miRNAs), carried by neuronal-derived exosomes in peripheral blood, could reflect alterations in neurogenic processes associated with Cushing's syndrome. Hence, in the present work, we measured the content in selected miRNAs of neuronally derived exosomes in peripheral blood of patients affected by endogenous and active CS and age and sex-matched healthy subjects. The human miRNAs (miR-126, miR-9, miR-223, miR-34a, miR-124a, and miR-146a) were quantified by RT-qPCR. All the miRNAs analyzed were significantly differentially expressed in CS patients as compared to healthy subjects. Our findings support the following: (i) patients with Cushing's syndrome (CS) may exhibit a putative dysregulation of neurogenesis that could underlie the early-onset impairment of affective and cognitive functions; (ii) the exosomal cargo may represent a potential biomarker for monitoring functional and dysfunctional neuroplasticity processes in adult humans. Additional studies are needed to confirm and expand upon the findings across a wider cohort of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信