没有参考基因组的机器学习增强m6A-Seq分析。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jing Yang, Minggui Song, Yifan Bu, Haonan Zhao, Chenghui Liu, Ting Zhang, Chujun Zhang, Shutu Xu, Chuang Ma
{"title":"没有参考基因组的机器学习增强m6A-Seq分析。","authors":"Jing Yang, Minggui Song, Yifan Bu, Haonan Zhao, Chenghui Liu, Ting Zhang, Chujun Zhang, Shutu Xu, Chuang Ma","doi":"10.1093/bib/bbaf235","DOIUrl":null,"url":null,"abstract":"<p><p>Methylated RNA m6A immunoprecipitation sequencing (m6A-Seq) is a powerful technique for investigating transcriptome-wide m6A modification. However, most of the existing m6A-Seq protocols rely on reference genomes, limiting their use in species lacking sequenced genomes. Here, we introduce mlPEA, a user-friendly, multi-functional platform specifically tailored to the streamlined processing of m6A-Seq data in a reference genome-free manner. mlPEA provides a comprehensive collection of functions required for performing transcriptome-wide m6A identification and analysis, where the reference-de novo assembled transcriptome-is built solely using m6A-Seq data. By taking advantage of machine learning (ML) algorithms, mlPEA enhances m6A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m6A-modified regions. These functions and ML models have been integrated into a web-based Galaxy framework. This ensures that mlPEA has powerful data interaction and visualization capabilities, with flexibility, traceability, and reproducibility throughout the analytical process. mlPEA also has high compatibility and portability as it employs advanced packaging technology, dramatically simplifying its large-scale application in various species. Validated through case studies of Arabidopsis, maize, and wheat, mlPEA has demonstrated its utility and robustness regarding reference genome-free m6A-Seq data analysis for plants of various genomic complexities. mlPEA is freely available via GitHub: https://github.com/cma2015/mlPEA.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-augmented m6A-Seq analysis without a reference genome.\",\"authors\":\"Jing Yang, Minggui Song, Yifan Bu, Haonan Zhao, Chenghui Liu, Ting Zhang, Chujun Zhang, Shutu Xu, Chuang Ma\",\"doi\":\"10.1093/bib/bbaf235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methylated RNA m6A immunoprecipitation sequencing (m6A-Seq) is a powerful technique for investigating transcriptome-wide m6A modification. However, most of the existing m6A-Seq protocols rely on reference genomes, limiting their use in species lacking sequenced genomes. Here, we introduce mlPEA, a user-friendly, multi-functional platform specifically tailored to the streamlined processing of m6A-Seq data in a reference genome-free manner. mlPEA provides a comprehensive collection of functions required for performing transcriptome-wide m6A identification and analysis, where the reference-de novo assembled transcriptome-is built solely using m6A-Seq data. By taking advantage of machine learning (ML) algorithms, mlPEA enhances m6A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m6A-modified regions. These functions and ML models have been integrated into a web-based Galaxy framework. This ensures that mlPEA has powerful data interaction and visualization capabilities, with flexibility, traceability, and reproducibility throughout the analytical process. mlPEA also has high compatibility and portability as it employs advanced packaging technology, dramatically simplifying its large-scale application in various species. Validated through case studies of Arabidopsis, maize, and wheat, mlPEA has demonstrated its utility and robustness regarding reference genome-free m6A-Seq data analysis for plants of various genomic complexities. mlPEA is freely available via GitHub: https://github.com/cma2015/mlPEA.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf235\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf235","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

甲基化RNA m6A免疫沉淀测序(m6A- seq)是研究转录组范围内m6A修饰的强大技术。然而,大多数现有的m6A-Seq方案依赖于参考基因组,限制了它们在缺乏测序基因组的物种中的应用。在这里,我们介绍mlPEA,这是一个用户友好的多功能平台,专门用于以参考基因组无方式简化m6A-Seq数据的处理。mlPEA提供了执行转录组范围内的m6A鉴定和分析所需的全面功能集合,其中参考-从头组装转录组-仅使用m6A- seq数据构建。通过利用机器学习(ML)算法,mlPEA通过构建鲁棒的计算模型来识别高质量的转录本和高置信度的m6a修饰区域,从而增强m6A-Seq数据分析。这些功能和ML模型已经集成到基于web的Galaxy框架中。这确保了mlPEA具有强大的数据交互和可视化功能,并在整个分析过程中具有灵活性、可追溯性和再现性。mlPEA还采用了先进的封装技术,具有很高的兼容性和可移植性,大大简化了其在各种物种中的大规模应用。通过对拟南芥、玉米和小麦的案例研究,mlPEA证明了其在各种基因组复杂性植物的参考无基因组m6A-Seq数据分析方面的实用性和稳健性。mlPEA可以通过GitHub免费获得:https://github.com/cma2015/mlPEA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-augmented m6A-Seq analysis without a reference genome.

Methylated RNA m6A immunoprecipitation sequencing (m6A-Seq) is a powerful technique for investigating transcriptome-wide m6A modification. However, most of the existing m6A-Seq protocols rely on reference genomes, limiting their use in species lacking sequenced genomes. Here, we introduce mlPEA, a user-friendly, multi-functional platform specifically tailored to the streamlined processing of m6A-Seq data in a reference genome-free manner. mlPEA provides a comprehensive collection of functions required for performing transcriptome-wide m6A identification and analysis, where the reference-de novo assembled transcriptome-is built solely using m6A-Seq data. By taking advantage of machine learning (ML) algorithms, mlPEA enhances m6A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m6A-modified regions. These functions and ML models have been integrated into a web-based Galaxy framework. This ensures that mlPEA has powerful data interaction and visualization capabilities, with flexibility, traceability, and reproducibility throughout the analytical process. mlPEA also has high compatibility and portability as it employs advanced packaging technology, dramatically simplifying its large-scale application in various species. Validated through case studies of Arabidopsis, maize, and wheat, mlPEA has demonstrated its utility and robustness regarding reference genome-free m6A-Seq data analysis for plants of various genomic complexities. mlPEA is freely available via GitHub: https://github.com/cma2015/mlPEA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信