Jing Yang, Minggui Song, Yifan Bu, Haonan Zhao, Chenghui Liu, Ting Zhang, Chujun Zhang, Shutu Xu, Chuang Ma
{"title":"没有参考基因组的机器学习增强m6A-Seq分析。","authors":"Jing Yang, Minggui Song, Yifan Bu, Haonan Zhao, Chenghui Liu, Ting Zhang, Chujun Zhang, Shutu Xu, Chuang Ma","doi":"10.1093/bib/bbaf235","DOIUrl":null,"url":null,"abstract":"<p><p>Methylated RNA m6A immunoprecipitation sequencing (m6A-Seq) is a powerful technique for investigating transcriptome-wide m6A modification. However, most of the existing m6A-Seq protocols rely on reference genomes, limiting their use in species lacking sequenced genomes. Here, we introduce mlPEA, a user-friendly, multi-functional platform specifically tailored to the streamlined processing of m6A-Seq data in a reference genome-free manner. mlPEA provides a comprehensive collection of functions required for performing transcriptome-wide m6A identification and analysis, where the reference-de novo assembled transcriptome-is built solely using m6A-Seq data. By taking advantage of machine learning (ML) algorithms, mlPEA enhances m6A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m6A-modified regions. These functions and ML models have been integrated into a web-based Galaxy framework. This ensures that mlPEA has powerful data interaction and visualization capabilities, with flexibility, traceability, and reproducibility throughout the analytical process. mlPEA also has high compatibility and portability as it employs advanced packaging technology, dramatically simplifying its large-scale application in various species. Validated through case studies of Arabidopsis, maize, and wheat, mlPEA has demonstrated its utility and robustness regarding reference genome-free m6A-Seq data analysis for plants of various genomic complexities. mlPEA is freely available via GitHub: https://github.com/cma2015/mlPEA.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-augmented m6A-Seq analysis without a reference genome.\",\"authors\":\"Jing Yang, Minggui Song, Yifan Bu, Haonan Zhao, Chenghui Liu, Ting Zhang, Chujun Zhang, Shutu Xu, Chuang Ma\",\"doi\":\"10.1093/bib/bbaf235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methylated RNA m6A immunoprecipitation sequencing (m6A-Seq) is a powerful technique for investigating transcriptome-wide m6A modification. However, most of the existing m6A-Seq protocols rely on reference genomes, limiting their use in species lacking sequenced genomes. Here, we introduce mlPEA, a user-friendly, multi-functional platform specifically tailored to the streamlined processing of m6A-Seq data in a reference genome-free manner. mlPEA provides a comprehensive collection of functions required for performing transcriptome-wide m6A identification and analysis, where the reference-de novo assembled transcriptome-is built solely using m6A-Seq data. By taking advantage of machine learning (ML) algorithms, mlPEA enhances m6A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m6A-modified regions. These functions and ML models have been integrated into a web-based Galaxy framework. This ensures that mlPEA has powerful data interaction and visualization capabilities, with flexibility, traceability, and reproducibility throughout the analytical process. mlPEA also has high compatibility and portability as it employs advanced packaging technology, dramatically simplifying its large-scale application in various species. Validated through case studies of Arabidopsis, maize, and wheat, mlPEA has demonstrated its utility and robustness regarding reference genome-free m6A-Seq data analysis for plants of various genomic complexities. mlPEA is freely available via GitHub: https://github.com/cma2015/mlPEA.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf235\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf235","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Machine learning-augmented m6A-Seq analysis without a reference genome.
Methylated RNA m6A immunoprecipitation sequencing (m6A-Seq) is a powerful technique for investigating transcriptome-wide m6A modification. However, most of the existing m6A-Seq protocols rely on reference genomes, limiting their use in species lacking sequenced genomes. Here, we introduce mlPEA, a user-friendly, multi-functional platform specifically tailored to the streamlined processing of m6A-Seq data in a reference genome-free manner. mlPEA provides a comprehensive collection of functions required for performing transcriptome-wide m6A identification and analysis, where the reference-de novo assembled transcriptome-is built solely using m6A-Seq data. By taking advantage of machine learning (ML) algorithms, mlPEA enhances m6A-Seq data analysis by constructing robust computational models for identifying high-quality transcripts and high-confidence m6A-modified regions. These functions and ML models have been integrated into a web-based Galaxy framework. This ensures that mlPEA has powerful data interaction and visualization capabilities, with flexibility, traceability, and reproducibility throughout the analytical process. mlPEA also has high compatibility and portability as it employs advanced packaging technology, dramatically simplifying its large-scale application in various species. Validated through case studies of Arabidopsis, maize, and wheat, mlPEA has demonstrated its utility and robustness regarding reference genome-free m6A-Seq data analysis for plants of various genomic complexities. mlPEA is freely available via GitHub: https://github.com/cma2015/mlPEA.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.