Marie Zikanova, Vaclava Skopova, Kyra E. Stuurman, Veronika Baresova, Olga Souckova, Ales Hnizda, Matyas Krijt, Anthony J. Bleyer, Jiri Zeman, Stanislav Kmoch
{"title":"磷酸核糖基甲酰基甘氨酸合成酶(PFAS)缺乏:嘌呤合成新缺陷的临床、遗传和代谢特征","authors":"Marie Zikanova, Vaclava Skopova, Kyra E. Stuurman, Veronika Baresova, Olga Souckova, Ales Hnizda, Matyas Krijt, Anthony J. Bleyer, Jiri Zeman, Stanislav Kmoch","doi":"10.1002/jimd.70041","DOIUrl":null,"url":null,"abstract":"<p>Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70041","citationCount":"0","resultStr":"{\"title\":\"Phosphoribosylformylglycinamidine Synthase (PFAS) Deficiency: Clinical, Genetic and Metabolic Characterisation of a Novel Defect in Purine de Novo Synthesis\",\"authors\":\"Marie Zikanova, Vaclava Skopova, Kyra E. Stuurman, Veronika Baresova, Olga Souckova, Ales Hnizda, Matyas Krijt, Anthony J. Bleyer, Jiri Zeman, Stanislav Kmoch\",\"doi\":\"10.1002/jimd.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.</p>\",\"PeriodicalId\":16281,\"journal\":{\"name\":\"Journal of Inherited Metabolic Disease\",\"volume\":\"48 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inherited Metabolic Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Phosphoribosylformylglycinamidine Synthase (PFAS) Deficiency: Clinical, Genetic and Metabolic Characterisation of a Novel Defect in Purine de Novo Synthesis
Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).