美国中南部地区水稻叶面积指数和冠层高度的模拟

IF 1.5 Q3 AGRONOMY
Ellie Kuhn, Beatriz Moreno-García, Michele L. Reba, Kusum Naithani, Benjamin R. K. Runkle
{"title":"美国中南部地区水稻叶面积指数和冠层高度的模拟","authors":"Ellie Kuhn,&nbsp;Beatriz Moreno-García,&nbsp;Michele L. Reba,&nbsp;Kusum Naithani,&nbsp;Benjamin R. K. Runkle","doi":"10.1002/agg2.70139","DOIUrl":null,"url":null,"abstract":"<p>Crop growth modeling plays a critical role in addressing the global challenges of food scarcity, carbon cycling, and water management. By simulating crop development from environmental factors, these models help predict harvest yield and carbon or water cycle terms and thus can inform policy and investment decisions. However, for some agricultural regions, such as the US Mid-South, there is a lack of comprehensive data specific to rice (<i>Oryza sativa</i>) cultivars and their growing conditions. Here, we use 30 field seasons of observational data to predict leaf area index (LAI) and canopy height (H<sub>can</sub>), key inputs for crop growth models, for numerous rice cultivars grown under different conditions in east-central Arkansas. Our results show that a peaked response to the accumulated growing degree day (LAI: <i>R</i><sup>2 </sup>= 0.83, root mean square error (RMSE) = 0.97 m<sup>2</sup> m<sup>−2</sup>; H<sub>can</sub>: <i>R</i><sup>2 </sup>= 0.90, RMSE = 10.9 cm) is a better functional form than one without temperature information, that is, driven only by days after planting (LAI: <i>R</i><sup>2 </sup>= 0.73, RMSE = 1.22 m<sup>2</sup> m<sup>−2</sup>; H<sub>can</sub>: <i>R</i><sup>2 </sup>= 0.83, RMSE = 14.5 cm). Additionally, predictions from a cultivar-agnostic model are comparable to the predictions from cultivar-specific models, suggesting that the broader cultivar-agnostic model is sufficient and can be widely applied to rice production systems in this region. Such a generalized model can support yield prediction efforts, disentangle carbon cycle terms, or be used for crop stress detection.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"8 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70139","citationCount":"0","resultStr":"{\"title\":\"Modeling rice leaf area index and canopy height in the US Mid-South region\",\"authors\":\"Ellie Kuhn,&nbsp;Beatriz Moreno-García,&nbsp;Michele L. Reba,&nbsp;Kusum Naithani,&nbsp;Benjamin R. K. Runkle\",\"doi\":\"10.1002/agg2.70139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crop growth modeling plays a critical role in addressing the global challenges of food scarcity, carbon cycling, and water management. By simulating crop development from environmental factors, these models help predict harvest yield and carbon or water cycle terms and thus can inform policy and investment decisions. However, for some agricultural regions, such as the US Mid-South, there is a lack of comprehensive data specific to rice (<i>Oryza sativa</i>) cultivars and their growing conditions. Here, we use 30 field seasons of observational data to predict leaf area index (LAI) and canopy height (H<sub>can</sub>), key inputs for crop growth models, for numerous rice cultivars grown under different conditions in east-central Arkansas. Our results show that a peaked response to the accumulated growing degree day (LAI: <i>R</i><sup>2 </sup>= 0.83, root mean square error (RMSE) = 0.97 m<sup>2</sup> m<sup>−2</sup>; H<sub>can</sub>: <i>R</i><sup>2 </sup>= 0.90, RMSE = 10.9 cm) is a better functional form than one without temperature information, that is, driven only by days after planting (LAI: <i>R</i><sup>2 </sup>= 0.73, RMSE = 1.22 m<sup>2</sup> m<sup>−2</sup>; H<sub>can</sub>: <i>R</i><sup>2 </sup>= 0.83, RMSE = 14.5 cm). Additionally, predictions from a cultivar-agnostic model are comparable to the predictions from cultivar-specific models, suggesting that the broader cultivar-agnostic model is sufficient and can be widely applied to rice production systems in this region. Such a generalized model can support yield prediction efforts, disentangle carbon cycle terms, or be used for crop stress detection.</p>\",\"PeriodicalId\":7567,\"journal\":{\"name\":\"Agrosystems, Geosciences & Environment\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agrosystems, Geosciences & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://acsess.onlinelibrary.wiley.com/doi/10.1002/agg2.70139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://acsess.onlinelibrary.wiley.com/doi/10.1002/agg2.70139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

作物生长模型在解决粮食短缺、碳循环和水资源管理等全球挑战方面发挥着关键作用。通过从环境因素模拟作物发育,这些模型有助于预测收成和碳或水循环条件,从而为政策和投资决策提供信息。然而,对于一些农业地区,如美国中南部,缺乏专门针对水稻(Oryza sativa)品种及其生长条件的综合数据。本文利用30个田间季节的观测数据,对阿肯色州中东部不同条件下种植的多个水稻品种的叶面积指数(LAI)和冠层高度(Hcan)进行了预测,这是作物生长模型的关键输入。结果表明:累积生长日数(LAI)的响应峰值为R2 = 0.83,均方根误差(RMSE) = 0.97 m2 m−2;Hcan: R2 = 0.90, RMSE = 10.9 cm)比不含温度信息的函数形式更好,即仅由种植后天数驱动(LAI: R2 = 0.73, RMSE = 1.22 m2 m−2;Hcan: R2 = 0.83, RMSE = 14.5 cm)。此外,品种不可知模型的预测结果与特定品种模型的预测结果相当,这表明更广泛的品种不可知模型是足够的,可以广泛应用于该地区的水稻生产系统。这种广义模型可以支持产量预测工作,解开碳循环项,或用于作物应力检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling rice leaf area index and canopy height in the US Mid-South region

Modeling rice leaf area index and canopy height in the US Mid-South region

Modeling rice leaf area index and canopy height in the US Mid-South region

Modeling rice leaf area index and canopy height in the US Mid-South region

Crop growth modeling plays a critical role in addressing the global challenges of food scarcity, carbon cycling, and water management. By simulating crop development from environmental factors, these models help predict harvest yield and carbon or water cycle terms and thus can inform policy and investment decisions. However, for some agricultural regions, such as the US Mid-South, there is a lack of comprehensive data specific to rice (Oryza sativa) cultivars and their growing conditions. Here, we use 30 field seasons of observational data to predict leaf area index (LAI) and canopy height (Hcan), key inputs for crop growth models, for numerous rice cultivars grown under different conditions in east-central Arkansas. Our results show that a peaked response to the accumulated growing degree day (LAI: R2 = 0.83, root mean square error (RMSE) = 0.97 m2 m−2; Hcan: R2 = 0.90, RMSE = 10.9 cm) is a better functional form than one without temperature information, that is, driven only by days after planting (LAI: R2 = 0.73, RMSE = 1.22 m2 m−2; Hcan: R2 = 0.83, RMSE = 14.5 cm). Additionally, predictions from a cultivar-agnostic model are comparable to the predictions from cultivar-specific models, suggesting that the broader cultivar-agnostic model is sufficient and can be widely applied to rice production systems in this region. Such a generalized model can support yield prediction efforts, disentangle carbon cycle terms, or be used for crop stress detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信