自优化径向基函数支持向量分类器SO-RBFSVC

IF 2.1 4区 化学 Q1 SOCIAL WORK
Qudus Ayodeji Thanni, Peter de Boves Harrington
{"title":"自优化径向基函数支持向量分类器SO-RBFSVC","authors":"Qudus Ayodeji Thanni,&nbsp;Peter de Boves Harrington","doi":"10.1002/cem.70038","DOIUrl":null,"url":null,"abstract":"<p>Support vector classifiers (SVCs) typically use radial basis function (RBF) kernels to map data into higher dimensional spaces that may improve the linear separation of otherwise nonseparable classes. We present a novel self-optimizing radial basis function support vector classifier (SO-RBFSVC) that integrates response surface methodology (RSM), two-dimensional cubic spline interpolation, and bootstrapped Latin partitions (BLPs) for automated hyperparameter tuning. The SO-RBFSVC simultaneously optimizes the RBF kernel width (<i>σ</i>) and cost parameter (<i>C</i>) using an interpolated response surface obtained from generalized prediction accuracies. The SO-RBFSVC was compared to other self-optimizing classifiers (super SVC [sSVC] and super partial least squares discriminant analysis [sPLS-DA]). Four datasets were evaluated: (i) hemp and marijuana discrimination using proton nuclear magnetic resonance spectra, (ii) barley growth location using near-infrared spectra, (iii) glass-type identification based on elemental composition, and (iv) wine cultivar classification from physicochemical properties. External validation results showed that SO-RBFSVC performed comparably to the other models, achieving error rates of 0.4 ± 0.5% for hemp/marijuana, 7 ± 1% for glass, and 6 ± 1% for wine, while outperforming the linear models with 10 ± 1% error for the barley NIR data. For the first time, generalized sensitivity analysis (GSA) was applied to quantify model linearity. GSA revealed high nonlinearity in the barley dataset, justifying a nonlinear model. The SO-RBFSVC provides robust, automated classifier tuning for low- and high-dimensional datasets, offering ease of use.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.70038","citationCount":"0","resultStr":"{\"title\":\"Self-Optimizing Radial Basis Function Support Vector Classifier (SO-RBFSVC)\",\"authors\":\"Qudus Ayodeji Thanni,&nbsp;Peter de Boves Harrington\",\"doi\":\"10.1002/cem.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Support vector classifiers (SVCs) typically use radial basis function (RBF) kernels to map data into higher dimensional spaces that may improve the linear separation of otherwise nonseparable classes. We present a novel self-optimizing radial basis function support vector classifier (SO-RBFSVC) that integrates response surface methodology (RSM), two-dimensional cubic spline interpolation, and bootstrapped Latin partitions (BLPs) for automated hyperparameter tuning. The SO-RBFSVC simultaneously optimizes the RBF kernel width (<i>σ</i>) and cost parameter (<i>C</i>) using an interpolated response surface obtained from generalized prediction accuracies. The SO-RBFSVC was compared to other self-optimizing classifiers (super SVC [sSVC] and super partial least squares discriminant analysis [sPLS-DA]). Four datasets were evaluated: (i) hemp and marijuana discrimination using proton nuclear magnetic resonance spectra, (ii) barley growth location using near-infrared spectra, (iii) glass-type identification based on elemental composition, and (iv) wine cultivar classification from physicochemical properties. External validation results showed that SO-RBFSVC performed comparably to the other models, achieving error rates of 0.4 ± 0.5% for hemp/marijuana, 7 ± 1% for glass, and 6 ± 1% for wine, while outperforming the linear models with 10 ± 1% error for the barley NIR data. For the first time, generalized sensitivity analysis (GSA) was applied to quantify model linearity. GSA revealed high nonlinearity in the barley dataset, justifying a nonlinear model. The SO-RBFSVC provides robust, automated classifier tuning for low- and high-dimensional datasets, offering ease of use.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.70038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.70038\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70038","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

支持向量分类器(SVCs)通常使用径向基函数(RBF)核将数据映射到高维空间,这可能会改善不可分类的线性分离。我们提出了一种新的自优化径向基函数支持向量分类器(SO-RBFSVC),它集成了响应面方法(RSM)、二维三次样条插值和用于自动超参数调谐的自引导拉丁分区(blp)。SO-RBFSVC利用广义预测精度得到的插值响应面同时优化RBF核宽度(σ)和代价参数(C)。将SO-RBFSVC与其他自优化分类器(超级SVC [sSVC]和超级偏最小二乘判别分析[sPLS-DA])进行比较。对4个数据集进行了评估:(i)利用质子核磁共振光谱对大麻和大麻进行鉴别,(ii)利用近红外光谱对大麦生长位置进行鉴别,(iii)利用元素组成对玻璃类型进行鉴别,以及(iv)利用理化性质对葡萄酒品种进行分类。外部验证结果表明,SO-RBFSVC与其他模型相比,大麻/大麻的误差率为0.4±0.5%,玻璃的误差率为7±1%,葡萄酒的误差率为6±1%,而大麦近红外数据的误差率为10±1%,优于线性模型。首次将广义灵敏度分析(GSA)用于模型线性度的量化。GSA揭示了大麦数据集中的高度非线性,证明了非线性模型的合理性。SO-RBFSVC为低维和高维数据集提供鲁棒的自动分类器调优,易于使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Optimizing Radial Basis Function Support Vector Classifier (SO-RBFSVC)

Self-Optimizing Radial Basis Function Support Vector Classifier (SO-RBFSVC)

Support vector classifiers (SVCs) typically use radial basis function (RBF) kernels to map data into higher dimensional spaces that may improve the linear separation of otherwise nonseparable classes. We present a novel self-optimizing radial basis function support vector classifier (SO-RBFSVC) that integrates response surface methodology (RSM), two-dimensional cubic spline interpolation, and bootstrapped Latin partitions (BLPs) for automated hyperparameter tuning. The SO-RBFSVC simultaneously optimizes the RBF kernel width (σ) and cost parameter (C) using an interpolated response surface obtained from generalized prediction accuracies. The SO-RBFSVC was compared to other self-optimizing classifiers (super SVC [sSVC] and super partial least squares discriminant analysis [sPLS-DA]). Four datasets were evaluated: (i) hemp and marijuana discrimination using proton nuclear magnetic resonance spectra, (ii) barley growth location using near-infrared spectra, (iii) glass-type identification based on elemental composition, and (iv) wine cultivar classification from physicochemical properties. External validation results showed that SO-RBFSVC performed comparably to the other models, achieving error rates of 0.4 ± 0.5% for hemp/marijuana, 7 ± 1% for glass, and 6 ± 1% for wine, while outperforming the linear models with 10 ± 1% error for the barley NIR data. For the first time, generalized sensitivity analysis (GSA) was applied to quantify model linearity. GSA revealed high nonlinearity in the barley dataset, justifying a nonlinear model. The SO-RBFSVC provides robust, automated classifier tuning for low- and high-dimensional datasets, offering ease of use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信