随机拉普拉斯增长的通用性

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
O. V. Alekseev
{"title":"随机拉普拉斯增长的通用性","authors":"O. V. Alekseev","doi":"10.1134/S0040577925050010","DOIUrl":null,"url":null,"abstract":"<p> We consider a stochastic Laplacian growth model within the framework of normal random matrices. In the limit of large matrix size, the support of eigenvalues forms a planar domain with a sharp boundary that evolves stochastically as the matrix size increases. We show that the most probable growth scenario is similar to deterministic Laplacian growth, while alternative scenarios illustrate the impact of fluctuations. We prove that the probability distribution function of fluctuations is given by the circular unitary ensemble introduced by Dyson in 1962. The partition function of fluctuations is shown to be universal, depending solely on the fluctuation intensity and the problem’s geometry, regardless of the initial domain shape. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"223 2","pages":"691 - 704"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universality of stochastic Laplacian growth\",\"authors\":\"O. V. Alekseev\",\"doi\":\"10.1134/S0040577925050010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider a stochastic Laplacian growth model within the framework of normal random matrices. In the limit of large matrix size, the support of eigenvalues forms a planar domain with a sharp boundary that evolves stochastically as the matrix size increases. We show that the most probable growth scenario is similar to deterministic Laplacian growth, while alternative scenarios illustrate the impact of fluctuations. We prove that the probability distribution function of fluctuations is given by the circular unitary ensemble introduced by Dyson in 1962. The partition function of fluctuations is shown to be universal, depending solely on the fluctuation intensity and the problem’s geometry, regardless of the initial domain shape. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"223 2\",\"pages\":\"691 - 704\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925050010\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925050010","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了正态随机矩阵框架内的随机拉普拉斯增长模型。在大矩阵尺寸的极限下,特征值的支持形成一个平面区域,该区域的边界随着矩阵尺寸的增大而随机演化。我们表明,最可能的增长情景类似于确定性拉普拉斯增长,而替代情景说明波动的影响。我们证明了涨落的概率分布函数是由Dyson于1962年引入的圆酉系综给出的。波动的配分函数被证明是通用的,仅取决于波动强度和问题的几何形状,而不考虑初始域形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universality of stochastic Laplacian growth

We consider a stochastic Laplacian growth model within the framework of normal random matrices. In the limit of large matrix size, the support of eigenvalues forms a planar domain with a sharp boundary that evolves stochastically as the matrix size increases. We show that the most probable growth scenario is similar to deterministic Laplacian growth, while alternative scenarios illustrate the impact of fluctuations. We prove that the probability distribution function of fluctuations is given by the circular unitary ensemble introduced by Dyson in 1962. The partition function of fluctuations is shown to be universal, depending solely on the fluctuation intensity and the problem’s geometry, regardless of the initial domain shape.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信