关于\(k\)孤立超曲面奇点的高Nash爆破导数李代数

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
N. Hussain, S. S.-T. Yau, Huaiqing Zuo
{"title":"关于\\(k\\)孤立超曲面奇点的高Nash爆破导数李代数","authors":"N. Hussain,&nbsp;S. S.-T. Yau,&nbsp;Huaiqing Zuo","doi":"10.1134/S0040577925050022","DOIUrl":null,"url":null,"abstract":"<p> Many physical questions such as <span>\\(4d\\)</span> <span>\\(N=2\\)</span> superconformal field theories, the Coulomb branch spectrum, and the Seiberg–Witten solutions are related to singularities. In this paper, we introduce some new invariants <span>\\(\\mathcal L^k_n(V)\\)</span>, <span>\\(\\rho_n^k\\)</span>, and <span>\\(d_n^k(V)\\)</span> of isolated hypersurface singularities <span>\\((V,0)\\)</span>. We give a new conjecture for the characterization of simple curve singularities using the <span>\\(k\\)</span>th higher Nash blow-up derivation Lie algebra <span>\\(\\mathcal L^k_n(V)\\)</span>. This conjecture is verified for small <span>\\(n\\)</span> and <span>\\(k\\)</span>. A inequality conjecture for <span>\\(\\rho_n^k\\)</span> and <span>\\(d_n^k(V)\\)</span> is proposed. These two conjectures are verified for binomial singularities. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"223 2","pages":"705 - 741"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the \\\\(k\\\\)th higher Nash blow-up derivation Lie algebras of isolated hypersurface singularities\",\"authors\":\"N. Hussain,&nbsp;S. S.-T. Yau,&nbsp;Huaiqing Zuo\",\"doi\":\"10.1134/S0040577925050022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Many physical questions such as <span>\\\\(4d\\\\)</span> <span>\\\\(N=2\\\\)</span> superconformal field theories, the Coulomb branch spectrum, and the Seiberg–Witten solutions are related to singularities. In this paper, we introduce some new invariants <span>\\\\(\\\\mathcal L^k_n(V)\\\\)</span>, <span>\\\\(\\\\rho_n^k\\\\)</span>, and <span>\\\\(d_n^k(V)\\\\)</span> of isolated hypersurface singularities <span>\\\\((V,0)\\\\)</span>. We give a new conjecture for the characterization of simple curve singularities using the <span>\\\\(k\\\\)</span>th higher Nash blow-up derivation Lie algebra <span>\\\\(\\\\mathcal L^k_n(V)\\\\)</span>. This conjecture is verified for small <span>\\\\(n\\\\)</span> and <span>\\\\(k\\\\)</span>. A inequality conjecture for <span>\\\\(\\\\rho_n^k\\\\)</span> and <span>\\\\(d_n^k(V)\\\\)</span> is proposed. These two conjectures are verified for binomial singularities. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"223 2\",\"pages\":\"705 - 741\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925050022\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925050022","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

许多物理问题,如\(4d\)\(N=2\)超共形场论、库仑分支谱和Seiberg-Witten解都与奇点有关。本文引入了孤立超曲面奇点\((V,0)\)的一些新的不变量\(\mathcal L^k_n(V)\)、\(\rho_n^k\)和\(d_n^k(V)\)。利用\(k\)高纳什爆破导数李代数\(\mathcal L^k_n(V)\)给出了简单曲线奇异性表征的一个新猜想。对于较小的\(n\)和\(k\),验证了这一猜想。提出了\(\rho_n^k\)和\(d_n^k(V)\)的不等式猜想。这两个猜想在二项奇点上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the \(k\)th higher Nash blow-up derivation Lie algebras of isolated hypersurface singularities

Many physical questions such as \(4d\) \(N=2\) superconformal field theories, the Coulomb branch spectrum, and the Seiberg–Witten solutions are related to singularities. In this paper, we introduce some new invariants \(\mathcal L^k_n(V)\), \(\rho_n^k\), and \(d_n^k(V)\) of isolated hypersurface singularities \((V,0)\). We give a new conjecture for the characterization of simple curve singularities using the \(k\)th higher Nash blow-up derivation Lie algebra \(\mathcal L^k_n(V)\). This conjecture is verified for small \(n\) and \(k\). A inequality conjecture for \(\rho_n^k\) and \(d_n^k(V)\) is proposed. These two conjectures are verified for binomial singularities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信