Yusen Sun , Xiaoqian Ma , Yanning Gong , Hongmin Guo , Congfa Zhou , Qixing Hu , Zhiying Zhou , Yuanyuan Zhang , Shangdong Liang , Guilin Li
{"title":"金丝桃素通过蛋白酶体- Nrf2 - GPX4信号轴抑制P2X7R改善糖尿病心脏自主神经病变","authors":"Yusen Sun , Xiaoqian Ma , Yanning Gong , Hongmin Guo , Congfa Zhou , Qixing Hu , Zhiying Zhou , Yuanyuan Zhang , Shangdong Liang , Guilin Li","doi":"10.1016/j.neuro.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>Hypericin (HYP), a primary active compound derived from Hypericum perforatum has been studied in the context of diabetes. The purpose of this study is to observe whether HYP can improve diabetic cardiac autonomic neuropathy (DCAN) and its possible mechanism. The current findings suggest that multiple drivers of ferroptosis in DCAN converge on the antioxidant protein nuclear factor erythroid 2-related factor 2(Nrf2). Overactivated P2X7 receptor (P2X7R) increases Nrf2 degradation by increasing proteasome activity through calcium ion accumulation. This work showed that HYP inhibited P2X7R expression, leading to elevated Nrf2 levels, thereby counteracting ferroptosis. This inhibition improves abnormal changes in cardiac function during the pathological process of DCAN in diabetic rats, including heart rate (HR), blood pressure (BP), heart rate variability (HRV), and sympathetic nerve discharge (SND). In summary, HYP enhances Nrf2 protein levels by suppressing P2X7R expression, reducing calcium-induced proteasome activity, and inhibits ferroptosis and inflammation. Thus, HYP alleviated DCAN progression.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"109 ","pages":"Pages 1-10"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of P2X7R by hypericin improves diabetic cardiac autonomic neuropathy through the proteasome- Nrf2 - GPX4 signaling axis\",\"authors\":\"Yusen Sun , Xiaoqian Ma , Yanning Gong , Hongmin Guo , Congfa Zhou , Qixing Hu , Zhiying Zhou , Yuanyuan Zhang , Shangdong Liang , Guilin Li\",\"doi\":\"10.1016/j.neuro.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hypericin (HYP), a primary active compound derived from Hypericum perforatum has been studied in the context of diabetes. The purpose of this study is to observe whether HYP can improve diabetic cardiac autonomic neuropathy (DCAN) and its possible mechanism. The current findings suggest that multiple drivers of ferroptosis in DCAN converge on the antioxidant protein nuclear factor erythroid 2-related factor 2(Nrf2). Overactivated P2X7 receptor (P2X7R) increases Nrf2 degradation by increasing proteasome activity through calcium ion accumulation. This work showed that HYP inhibited P2X7R expression, leading to elevated Nrf2 levels, thereby counteracting ferroptosis. This inhibition improves abnormal changes in cardiac function during the pathological process of DCAN in diabetic rats, including heart rate (HR), blood pressure (BP), heart rate variability (HRV), and sympathetic nerve discharge (SND). In summary, HYP enhances Nrf2 protein levels by suppressing P2X7R expression, reducing calcium-induced proteasome activity, and inhibits ferroptosis and inflammation. Thus, HYP alleviated DCAN progression.</div></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"109 \",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X25000592\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X25000592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Inhibition of P2X7R by hypericin improves diabetic cardiac autonomic neuropathy through the proteasome- Nrf2 - GPX4 signaling axis
Hypericin (HYP), a primary active compound derived from Hypericum perforatum has been studied in the context of diabetes. The purpose of this study is to observe whether HYP can improve diabetic cardiac autonomic neuropathy (DCAN) and its possible mechanism. The current findings suggest that multiple drivers of ferroptosis in DCAN converge on the antioxidant protein nuclear factor erythroid 2-related factor 2(Nrf2). Overactivated P2X7 receptor (P2X7R) increases Nrf2 degradation by increasing proteasome activity through calcium ion accumulation. This work showed that HYP inhibited P2X7R expression, leading to elevated Nrf2 levels, thereby counteracting ferroptosis. This inhibition improves abnormal changes in cardiac function during the pathological process of DCAN in diabetic rats, including heart rate (HR), blood pressure (BP), heart rate variability (HRV), and sympathetic nerve discharge (SND). In summary, HYP enhances Nrf2 protein levels by suppressing P2X7R expression, reducing calcium-induced proteasome activity, and inhibits ferroptosis and inflammation. Thus, HYP alleviated DCAN progression.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.