亚毫米和高长径比管外壁表面温度测量的校正方法

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Zhenhua Wang , Yu Feng , Huihang Zhang , Shuai Xu , Jiang Qin
{"title":"亚毫米和高长径比管外壁表面温度测量的校正方法","authors":"Zhenhua Wang ,&nbsp;Yu Feng ,&nbsp;Huihang Zhang ,&nbsp;Shuai Xu ,&nbsp;Jiang Qin","doi":"10.1016/j.expthermflusci.2025.111528","DOIUrl":null,"url":null,"abstract":"<div><div>The heat transfer characteristics of working medium in sub-millimeter and high length-diameter ratios tubes have broad application potential in various fields. However, accurately measuring the external wall surface temperature remains challenging due to several factors. In the non-axial end region, property variations of the working medium and non-uniform tube wall thickness complicate the measurement of external wall temperatures that reflect true heat transfer characteristics. In the axial end region, the external wall temperature is affected by the axial heat dissipation. This study introduces a correction approach for external wall temperature measurement. In the non-axial end region, multiple thermocouples are circumferentially welded to the tube surface. The heat transfer coefficients at these weld locations are averaged to represent the comprehensive heat transfer characteristics across the tube’s cross-section. By combining these measurements with fluid temperatures that better reflect the local flow state, correction values for the inner wall temperature are derived, enabling accurate determination of the external wall temperatures. In the axial end region, corrections are applied by compensating for heat transfer to the condenser. Experimental validation demonstrates the effectiveness of the proposed method. After circumferential temperature correction, the average relative error of external wall temperature measurements decreases from −10.1 % to 1.1 %. Similarly, axial temperature correction reduces the average relative error from 32.4 % to 13 %. These results confirm the accuracy and robustness of the correction approach, offering a reliable solution for heat transfer characterization in sub-millimeter and high length-diameter ratios tubes.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"169 ","pages":"Article 111528"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A correction approach of external wall surface temperature measurements in sub-millimeter and high length-diameter ratios tubes\",\"authors\":\"Zhenhua Wang ,&nbsp;Yu Feng ,&nbsp;Huihang Zhang ,&nbsp;Shuai Xu ,&nbsp;Jiang Qin\",\"doi\":\"10.1016/j.expthermflusci.2025.111528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The heat transfer characteristics of working medium in sub-millimeter and high length-diameter ratios tubes have broad application potential in various fields. However, accurately measuring the external wall surface temperature remains challenging due to several factors. In the non-axial end region, property variations of the working medium and non-uniform tube wall thickness complicate the measurement of external wall temperatures that reflect true heat transfer characteristics. In the axial end region, the external wall temperature is affected by the axial heat dissipation. This study introduces a correction approach for external wall temperature measurement. In the non-axial end region, multiple thermocouples are circumferentially welded to the tube surface. The heat transfer coefficients at these weld locations are averaged to represent the comprehensive heat transfer characteristics across the tube’s cross-section. By combining these measurements with fluid temperatures that better reflect the local flow state, correction values for the inner wall temperature are derived, enabling accurate determination of the external wall temperatures. In the axial end region, corrections are applied by compensating for heat transfer to the condenser. Experimental validation demonstrates the effectiveness of the proposed method. After circumferential temperature correction, the average relative error of external wall temperature measurements decreases from −10.1 % to 1.1 %. Similarly, axial temperature correction reduces the average relative error from 32.4 % to 13 %. These results confirm the accuracy and robustness of the correction approach, offering a reliable solution for heat transfer characterization in sub-millimeter and high length-diameter ratios tubes.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"169 \",\"pages\":\"Article 111528\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177725001220\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725001220","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

亚毫米和高长径比管的工质传热特性在各个领域具有广泛的应用潜力。然而,由于几个因素,准确测量外壁表面温度仍然具有挑战性。在非轴向端区,工质性质的变化和管壁厚度的不均匀使反映真实传热特性的外壁温度的测量复杂化。在轴端区域,外壁温度受轴向散热的影响。介绍了一种外墙温度测量的校正方法。在非轴向端区,多个热电偶沿周向焊接到管表面。这些焊接位置的传热系数被平均,以表示整个管道截面的综合传热特性。通过将这些测量结果与能够更好地反映局部流动状态的流体温度相结合,得出了内壁温度的校正值,从而能够准确地确定外壁温度。在轴向端区域,通过补偿冷凝器的热传递来进行校正。实验验证了该方法的有效性。经周向温度校正后,外墙温度测量的平均相对误差从- 10.1%降低到1.1%。同样,轴向温度校正将平均相对误差从32.4%降低到13%。这些结果证实了校正方法的准确性和鲁棒性,为亚毫米和高长径比管的传热表征提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A correction approach of external wall surface temperature measurements in sub-millimeter and high length-diameter ratios tubes
The heat transfer characteristics of working medium in sub-millimeter and high length-diameter ratios tubes have broad application potential in various fields. However, accurately measuring the external wall surface temperature remains challenging due to several factors. In the non-axial end region, property variations of the working medium and non-uniform tube wall thickness complicate the measurement of external wall temperatures that reflect true heat transfer characteristics. In the axial end region, the external wall temperature is affected by the axial heat dissipation. This study introduces a correction approach for external wall temperature measurement. In the non-axial end region, multiple thermocouples are circumferentially welded to the tube surface. The heat transfer coefficients at these weld locations are averaged to represent the comprehensive heat transfer characteristics across the tube’s cross-section. By combining these measurements with fluid temperatures that better reflect the local flow state, correction values for the inner wall temperature are derived, enabling accurate determination of the external wall temperatures. In the axial end region, corrections are applied by compensating for heat transfer to the condenser. Experimental validation demonstrates the effectiveness of the proposed method. After circumferential temperature correction, the average relative error of external wall temperature measurements decreases from −10.1 % to 1.1 %. Similarly, axial temperature correction reduces the average relative error from 32.4 % to 13 %. These results confirm the accuracy and robustness of the correction approach, offering a reliable solution for heat transfer characterization in sub-millimeter and high length-diameter ratios tubes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信