使用机器学习改进营销策略的客户细分框架

Aya Ashraf , Christina Albert Rayed , Nancy Awadallah Awad , Heba M. Sabry
{"title":"使用机器学习改进营销策略的客户细分框架","authors":"Aya Ashraf ,&nbsp;Christina Albert Rayed ,&nbsp;Nancy Awadallah Awad ,&nbsp;Heba M. Sabry","doi":"10.1016/j.procs.2025.03.240","DOIUrl":null,"url":null,"abstract":"<div><div>It is hard for the marketing team to set a strategy without dividing the customers into groups. Clustering is a well-known machine-learning technique that can be used to implement customer segmentation. It is an unsupervised learning method that creates clusters by dividing a dataset into many valuable subclasses. In online retail datasets, algorithms such as K-means, Mini Batch K-means, Spectral Clustering, and Fuzzy K-means are employed to categorize customers according to their Recency, Frequency, and Monetary (RFM) features. After analyzing the Silhouette Score, the K-means achieved a higher score, 0.432619, which implies that this algorithm achieved comparable cluster cohesion and separation levels. This paper aims to develop a framework for customer segmentation using machine learning to improve marketing strategies.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"260 ","pages":"Pages 616-625"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Customer Segmentation to Improve Marketing Strategies Using Machine Learning\",\"authors\":\"Aya Ashraf ,&nbsp;Christina Albert Rayed ,&nbsp;Nancy Awadallah Awad ,&nbsp;Heba M. Sabry\",\"doi\":\"10.1016/j.procs.2025.03.240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is hard for the marketing team to set a strategy without dividing the customers into groups. Clustering is a well-known machine-learning technique that can be used to implement customer segmentation. It is an unsupervised learning method that creates clusters by dividing a dataset into many valuable subclasses. In online retail datasets, algorithms such as K-means, Mini Batch K-means, Spectral Clustering, and Fuzzy K-means are employed to categorize customers according to their Recency, Frequency, and Monetary (RFM) features. After analyzing the Silhouette Score, the K-means achieved a higher score, 0.432619, which implies that this algorithm achieved comparable cluster cohesion and separation levels. This paper aims to develop a framework for customer segmentation using machine learning to improve marketing strategies.</div></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"260 \",\"pages\":\"Pages 616-625\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050925009846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925009846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果不把顾客分成不同的群体,营销团队很难制定战略。聚类是一种众所周知的机器学习技术,可用于实现客户细分。它是一种无监督学习方法,通过将数据集划分为许多有价值的子类来创建聚类。在在线零售数据集中,采用K-means、Mini Batch K-means、谱聚类和模糊K-means等算法,根据客户的recent, Frequency和Monetary (RFM)特征对客户进行分类。通过对Silhouette Score的分析,K-means获得了更高的分数0.432619,这意味着该算法达到了相当的聚类内聚和分离水平。本文旨在开发一个使用机器学习来改进营销策略的客户细分框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Customer Segmentation to Improve Marketing Strategies Using Machine Learning
It is hard for the marketing team to set a strategy without dividing the customers into groups. Clustering is a well-known machine-learning technique that can be used to implement customer segmentation. It is an unsupervised learning method that creates clusters by dividing a dataset into many valuable subclasses. In online retail datasets, algorithms such as K-means, Mini Batch K-means, Spectral Clustering, and Fuzzy K-means are employed to categorize customers according to their Recency, Frequency, and Monetary (RFM) features. After analyzing the Silhouette Score, the K-means achieved a higher score, 0.432619, which implies that this algorithm achieved comparable cluster cohesion and separation levels. This paper aims to develop a framework for customer segmentation using machine learning to improve marketing strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信