Auto-StyleMixer:用于跨域数据增强的通用自适应n对1框架

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huihuang Zhang, Haigen Hu, Bin Cao, Xiaoqin Zhang
{"title":"Auto-StyleMixer:用于跨域数据增强的通用自适应n对1框架","authors":"Huihuang Zhang,&nbsp;Haigen Hu,&nbsp;Bin Cao,&nbsp;Xiaoqin Zhang","doi":"10.1016/j.knosys.2025.113616","DOIUrl":null,"url":null,"abstract":"<div><div>Existing domain generalization (DG) approaches that rely on traditional techniques like the Fourier transform and normalization can extract style information for cross-domain data augmentation by confusing styles to enhance model generalization. However, these one-to-one methods face two significant challenges: (1) They cannot effectively extract pure style information in deep layers, potentially disrupting the ability to learn content information. (2) Due to the unknown purity of the extracted style information, considerable resources are required to find the optimal style-mixing configuration based on manual experience. To address these challenges, we propose a universal N-to-one cross-domain data augmentation framework, named Auto-StyleMixer, which not only extracts purer style information but also adapts to learn style-mixing configurations without any manual intervention. The proposed framework can embed any traditional style extraction techniques and can be integrated as a plug-and-play module into any architecture, whether CNNs or Transformers. Extensive experiments demonstrate the effectiveness of the proposed method, showing that it achieves state-of-the-art performance on five DG benchmarks. The source code is available at <span><span>https://github.com/Jin-huihuang/AutoStyleMixer</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"323 ","pages":"Article 113616"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-StyleMixer: A universal adaptive N-to-One framework for cross-domain data augmentation\",\"authors\":\"Huihuang Zhang,&nbsp;Haigen Hu,&nbsp;Bin Cao,&nbsp;Xiaoqin Zhang\",\"doi\":\"10.1016/j.knosys.2025.113616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing domain generalization (DG) approaches that rely on traditional techniques like the Fourier transform and normalization can extract style information for cross-domain data augmentation by confusing styles to enhance model generalization. However, these one-to-one methods face two significant challenges: (1) They cannot effectively extract pure style information in deep layers, potentially disrupting the ability to learn content information. (2) Due to the unknown purity of the extracted style information, considerable resources are required to find the optimal style-mixing configuration based on manual experience. To address these challenges, we propose a universal N-to-one cross-domain data augmentation framework, named Auto-StyleMixer, which not only extracts purer style information but also adapts to learn style-mixing configurations without any manual intervention. The proposed framework can embed any traditional style extraction techniques and can be integrated as a plug-and-play module into any architecture, whether CNNs or Transformers. Extensive experiments demonstrate the effectiveness of the proposed method, showing that it achieves state-of-the-art performance on five DG benchmarks. The source code is available at <span><span>https://github.com/Jin-huihuang/AutoStyleMixer</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"323 \",\"pages\":\"Article 113616\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125006628\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125006628","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的域泛化方法依赖于传统的傅里叶变换和归一化等技术,可以通过混淆样式来提取跨域数据增强的样式信息,从而增强模型的泛化能力。然而,这些一对一的方法面临着两个重大挑战:(1)它们不能有效地提取深层的纯风格信息,可能会破坏学习内容信息的能力。(2)由于提取的样式信息纯度未知,需要耗费大量资源,根据人工经验寻找最优的样式混合配置。为了应对这些挑战,我们提出了一个通用的n对1跨域数据增强框架,名为Auto-StyleMixer,它不仅可以提取更纯粹的风格信息,还可以在没有任何人工干预的情况下适应学习风格混合配置。所提出的框架可以嵌入任何传统风格的提取技术,并且可以作为即插即用模块集成到任何架构中,无论是cnn还是transformer。大量的实验证明了所提出方法的有效性,表明它在五个DG基准上达到了最先进的性能。源代码可从https://github.com/Jin-huihuang/AutoStyleMixer获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-StyleMixer: A universal adaptive N-to-One framework for cross-domain data augmentation
Existing domain generalization (DG) approaches that rely on traditional techniques like the Fourier transform and normalization can extract style information for cross-domain data augmentation by confusing styles to enhance model generalization. However, these one-to-one methods face two significant challenges: (1) They cannot effectively extract pure style information in deep layers, potentially disrupting the ability to learn content information. (2) Due to the unknown purity of the extracted style information, considerable resources are required to find the optimal style-mixing configuration based on manual experience. To address these challenges, we propose a universal N-to-one cross-domain data augmentation framework, named Auto-StyleMixer, which not only extracts purer style information but also adapts to learn style-mixing configurations without any manual intervention. The proposed framework can embed any traditional style extraction techniques and can be integrated as a plug-and-play module into any architecture, whether CNNs or Transformers. Extensive experiments demonstrate the effectiveness of the proposed method, showing that it achieves state-of-the-art performance on five DG benchmarks. The source code is available at https://github.com/Jin-huihuang/AutoStyleMixer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信