具有至少两个不同质因数的配分函数模整数的纽曼猜想

IF 1.5 1区 数学 Q1 MATHEMATICS
Dohoon Choi , Youngmin Lee
{"title":"具有至少两个不同质因数的配分函数模整数的纽曼猜想","authors":"Dohoon Choi ,&nbsp;Youngmin Lee","doi":"10.1016/j.aim.2025.110367","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a positive integer and <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of partitions of a positive integer <em>n</em>. Newman's Conjecture asserts that for each integer <em>r</em>, there are infinitely many positive integers <em>n</em> such that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≡</mo><mi>r</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>M</mi><mo>)</mo><mo>.</mo></math></span></span></span> For a positive integer <em>d</em>, let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be the set of positive integers <em>M</em> such that the number of prime divisors of <em>M</em> is <em>d</em>. In this paper, we prove that for each positive integer <em>d</em>, the density of the set of positive integers <em>M</em> for which Newman's Conjecture holds in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> is 1. Furthermore, we study an analogue of Newman's Conjecture for weakly holomorphic modular forms on <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> with nebentypus, and this applies to <em>t</em>-core partitions and generalized Frobenius partitions with <em>h</em>-colors.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110367"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Newman's conjecture for the partition function modulo integers with at least two distinct prime divisors\",\"authors\":\"Dohoon Choi ,&nbsp;Youngmin Lee\",\"doi\":\"10.1016/j.aim.2025.110367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>M</em> be a positive integer and <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of partitions of a positive integer <em>n</em>. Newman's Conjecture asserts that for each integer <em>r</em>, there are infinitely many positive integers <em>n</em> such that<span><span><span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>≡</mo><mi>r</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>M</mi><mo>)</mo><mo>.</mo></math></span></span></span> For a positive integer <em>d</em>, let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be the set of positive integers <em>M</em> such that the number of prime divisors of <em>M</em> is <em>d</em>. In this paper, we prove that for each positive integer <em>d</em>, the density of the set of positive integers <em>M</em> for which Newman's Conjecture holds in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> is 1. Furthermore, we study an analogue of Newman's Conjecture for weakly holomorphic modular forms on <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> with nebentypus, and this applies to <em>t</em>-core partitions and generalized Frobenius partitions with <em>h</em>-colors.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"477 \",\"pages\":\"Article 110367\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002658\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002658","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M为正整数,p(n)为正整数n的分区数。纽曼猜想断言,对于每一个整数r,有无限多个正整数n使得p(n)≡r(modM)。对于正整数d,设Bd为正整数M的集合,使得M的质因数个数为d。本文证明了对于每一个正整数d,在Bd中成立纽曼猜想的正整数集合M的密度为1。在此基础上,研究了Γ0(N)上带nebentypus的弱全纯模形式的Newman猜想,并将其应用于具有h色的t核分区和广义Frobenius分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Newman's conjecture for the partition function modulo integers with at least two distinct prime divisors
Let M be a positive integer and p(n) be the number of partitions of a positive integer n. Newman's Conjecture asserts that for each integer r, there are infinitely many positive integers n such thatp(n)r(modM). For a positive integer d, let Bd be the set of positive integers M such that the number of prime divisors of M is d. In this paper, we prove that for each positive integer d, the density of the set of positive integers M for which Newman's Conjecture holds in Bd is 1. Furthermore, we study an analogue of Newman's Conjecture for weakly holomorphic modular forms on Γ0(N) with nebentypus, and this applies to t-core partitions and generalized Frobenius partitions with h-colors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信