高性价比的高温热电石墨气凝胶:协同超高导电性和绝热性

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yinan Nie , Yang Hu , Nan Xin, Yifei Li, Xin Zhao, Min Zhang, Guihua Tang
{"title":"高性价比的高温热电石墨气凝胶:协同超高导电性和绝热性","authors":"Yinan Nie ,&nbsp;Yang Hu ,&nbsp;Nan Xin,&nbsp;Yifei Li,&nbsp;Xin Zhao,&nbsp;Min Zhang,&nbsp;Guihua Tang","doi":"10.1016/j.jcis.2025.137926","DOIUrl":null,"url":null,"abstract":"<div><div>High temperature exposure is commonly encountered in aerospace and industry, necessitating materials capable of providing both thermal insulation and thermal energy conversion. However, current thermoelectric aerogels often face dual challenges of constrained application temperatures (300–400 K) and prohibitively high costs due to substrate material limitations. In this study, a cost-effective graphite aerogel was fabricated using the directional freeze-drying method for integrated thermal insulation-thermoelectric applications across a wide temperature range. A pioneering Voronoi diagram-based electrical conductivity model featuring fractal lamellar structures was proposed with below 5% deviation between simulation and experimental data, which enables analysis of electrical transport properties under different densities of the lamellar structure, providing in-depth mechanism analysis of the interplay between microstructure and thermoelectric performance. By modulating the oriented lamellar skeletal structure, this aerogel achieved an efficient electrical carrier transportation of 48.28 S·cm<sup>−1</sup> and an effective suppression of thermal conductivity to 0.585 W·m<sup>−1</sup>·K<sup>−1</sup> at 923 K. Remarkably, the aerogel exhibits a 2–3 orders of magnitude enhancement in cost-normalized electrical conductivity over current-generation thermoelectric aerogels. Due to the band degeneracy effect, the Seebeck coefficient shows a significant increase when the temperature exceeds 773 K and reaches 96.84 μV·K<sup>−1</sup> at 923 K. The hierarchically structured graphite aerogel exhibits exceptional high-temperature thermoelectric performance with a peak ZT value of 0.036, creating an innovative framework for high-temperature thermal management and energy conversion in extreme environments.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137926"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-effective graphite aerogel for high-temperature thermoelectrics: Synergizing ultra-high electrical conductivity and thermal insulation\",\"authors\":\"Yinan Nie ,&nbsp;Yang Hu ,&nbsp;Nan Xin,&nbsp;Yifei Li,&nbsp;Xin Zhao,&nbsp;Min Zhang,&nbsp;Guihua Tang\",\"doi\":\"10.1016/j.jcis.2025.137926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High temperature exposure is commonly encountered in aerospace and industry, necessitating materials capable of providing both thermal insulation and thermal energy conversion. However, current thermoelectric aerogels often face dual challenges of constrained application temperatures (300–400 K) and prohibitively high costs due to substrate material limitations. In this study, a cost-effective graphite aerogel was fabricated using the directional freeze-drying method for integrated thermal insulation-thermoelectric applications across a wide temperature range. A pioneering Voronoi diagram-based electrical conductivity model featuring fractal lamellar structures was proposed with below 5% deviation between simulation and experimental data, which enables analysis of electrical transport properties under different densities of the lamellar structure, providing in-depth mechanism analysis of the interplay between microstructure and thermoelectric performance. By modulating the oriented lamellar skeletal structure, this aerogel achieved an efficient electrical carrier transportation of 48.28 S·cm<sup>−1</sup> and an effective suppression of thermal conductivity to 0.585 W·m<sup>−1</sup>·K<sup>−1</sup> at 923 K. Remarkably, the aerogel exhibits a 2–3 orders of magnitude enhancement in cost-normalized electrical conductivity over current-generation thermoelectric aerogels. Due to the band degeneracy effect, the Seebeck coefficient shows a significant increase when the temperature exceeds 773 K and reaches 96.84 μV·K<sup>−1</sup> at 923 K. The hierarchically structured graphite aerogel exhibits exceptional high-temperature thermoelectric performance with a peak ZT value of 0.036, creating an innovative framework for high-temperature thermal management and energy conversion in extreme environments.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"697 \",\"pages\":\"Article 137926\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013177\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高温暴露在航空航天和工业中经常遇到,需要能够提供隔热和热能转换的材料。然而,目前的热电气凝胶经常面临双重挑战:限制应用温度(300 - 400k)和由于衬底材料的限制而导致的过高的成本。在这项研究中,采用定向冷冻干燥方法制备了一种具有成本效益的石墨气凝胶,用于在宽温度范围内集成隔热-热电应用。提出了一种基于Voronoi图的分形片层结构电导率模型,模拟与实验数据偏差小于5%,可以分析不同密度片层结构下的电输运特性,深入分析微观结构与热电性能相互作用的机理。通过调节定向板层骨架结构,该气凝胶在923 K时实现了48.28 S·cm−1的高效电载流子输运,有效抑制了0.585 W·m−1·K−1的热导率。值得注意的是,与当前一代热电气凝胶相比,该气凝胶的成本标准化电导率提高了2-3个数量级。由于能带简并效应,当温度超过773 K时,Seebeck系数显著增大,在923 K时达到96.84 μV·K−1。分层结构的石墨气凝胶具有优异的高温热电性能,峰值ZT值为0.036,为极端环境下的高温热管理和能量转换创造了创新的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-effective graphite aerogel for high-temperature thermoelectrics: Synergizing ultra-high electrical conductivity and thermal insulation
High temperature exposure is commonly encountered in aerospace and industry, necessitating materials capable of providing both thermal insulation and thermal energy conversion. However, current thermoelectric aerogels often face dual challenges of constrained application temperatures (300–400 K) and prohibitively high costs due to substrate material limitations. In this study, a cost-effective graphite aerogel was fabricated using the directional freeze-drying method for integrated thermal insulation-thermoelectric applications across a wide temperature range. A pioneering Voronoi diagram-based electrical conductivity model featuring fractal lamellar structures was proposed with below 5% deviation between simulation and experimental data, which enables analysis of electrical transport properties under different densities of the lamellar structure, providing in-depth mechanism analysis of the interplay between microstructure and thermoelectric performance. By modulating the oriented lamellar skeletal structure, this aerogel achieved an efficient electrical carrier transportation of 48.28 S·cm−1 and an effective suppression of thermal conductivity to 0.585 W·m−1·K−1 at 923 K. Remarkably, the aerogel exhibits a 2–3 orders of magnitude enhancement in cost-normalized electrical conductivity over current-generation thermoelectric aerogels. Due to the band degeneracy effect, the Seebeck coefficient shows a significant increase when the temperature exceeds 773 K and reaches 96.84 μV·K−1 at 923 K. The hierarchically structured graphite aerogel exhibits exceptional high-temperature thermoelectric performance with a peak ZT value of 0.036, creating an innovative framework for high-temperature thermal management and energy conversion in extreme environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信