软约束下嵌段共聚物纳米复合材料

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Javier Diaz*, Marco Pinna*, Andrei Zvelindovsky* and Ignacio Pagonabarraga*, 
{"title":"软约束下嵌段共聚物纳米复合材料","authors":"Javier Diaz*,&nbsp;Marco Pinna*,&nbsp;Andrei Zvelindovsky* and Ignacio Pagonabarraga*,&nbsp;","doi":"10.1021/acs.macromol.4c0318410.1021/acs.macromol.4c03184","DOIUrl":null,"url":null,"abstract":"<p >Block copolymer (BCP) melts can be blended with solvents to self-assemble into complex droplets with internal structures. Controlling the morphology of these softly confined structures is crucial for various applications, including drug delivery. The addition of nanoparticles (NPs) to BCP droplets produces hierarchical co-assembly with intricate structures, where BCPs act as scaffolds. However, incorporating NPs can significantly alter the BCP droplet structure, leading to emergent behavior. Computer simulations reveal that confinement-induced frustration leads to a Janus-like morphology, with spatially segregated hexagonal and lamellar structures within the droplet bulk. Systematic exploration of NP loading and chemical interactions demonstrates various phase transitions, which are rationalized based on changes in the effective composition and solubility of the BCP droplet. A time-dependent model enables the study of the kinetics of several NP-induced layered morphologies, indicating that changes in the effective solubility of the BCP droplet result in a slow progression toward an onion morphology.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 10","pages":"5240–5253 5240–5253"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c03184","citationCount":"0","resultStr":"{\"title\":\"Block Copolymer Nanocomposites under Soft Confinement\",\"authors\":\"Javier Diaz*,&nbsp;Marco Pinna*,&nbsp;Andrei Zvelindovsky* and Ignacio Pagonabarraga*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.4c0318410.1021/acs.macromol.4c03184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Block copolymer (BCP) melts can be blended with solvents to self-assemble into complex droplets with internal structures. Controlling the morphology of these softly confined structures is crucial for various applications, including drug delivery. The addition of nanoparticles (NPs) to BCP droplets produces hierarchical co-assembly with intricate structures, where BCPs act as scaffolds. However, incorporating NPs can significantly alter the BCP droplet structure, leading to emergent behavior. Computer simulations reveal that confinement-induced frustration leads to a Janus-like morphology, with spatially segregated hexagonal and lamellar structures within the droplet bulk. Systematic exploration of NP loading and chemical interactions demonstrates various phase transitions, which are rationalized based on changes in the effective composition and solubility of the BCP droplet. A time-dependent model enables the study of the kinetics of several NP-induced layered morphologies, indicating that changes in the effective solubility of the BCP droplet result in a slow progression toward an onion morphology.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 10\",\"pages\":\"5240–5253 5240–5253\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c03184\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.4c03184\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c03184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

嵌段共聚物(BCP)熔体可以与溶剂混合,自组装成具有内部结构的复杂液滴。控制这些软约束结构的形态对于包括药物输送在内的各种应用至关重要。将纳米颗粒(NPs)添加到BCP液滴中产生具有复杂结构的分层共组装,其中bps充当支架。然而,加入NPs可以显著改变BCP液滴结构,导致紧急行为。计算机模拟表明,封闭诱导的挫折导致了类似两面的形态,在液滴体中具有空间分离的六边形和片层结构。对NP负载和化学相互作用的系统探索显示了各种相变,这些相变是基于BCP液滴有效成分和溶解度的变化而合理的。一个时间依赖的模型可以研究几种np诱导的层状形态的动力学,表明BCP液滴有效溶解度的变化导致了向洋葱形态的缓慢进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block Copolymer Nanocomposites under Soft Confinement

Block copolymer (BCP) melts can be blended with solvents to self-assemble into complex droplets with internal structures. Controlling the morphology of these softly confined structures is crucial for various applications, including drug delivery. The addition of nanoparticles (NPs) to BCP droplets produces hierarchical co-assembly with intricate structures, where BCPs act as scaffolds. However, incorporating NPs can significantly alter the BCP droplet structure, leading to emergent behavior. Computer simulations reveal that confinement-induced frustration leads to a Janus-like morphology, with spatially segregated hexagonal and lamellar structures within the droplet bulk. Systematic exploration of NP loading and chemical interactions demonstrates various phase transitions, which are rationalized based on changes in the effective composition and solubility of the BCP droplet. A time-dependent model enables the study of the kinetics of several NP-induced layered morphologies, indicating that changes in the effective solubility of the BCP droplet result in a slow progression toward an onion morphology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信