聚合物-壁相互作用在双连续纳米多孔结构中的缓慢渗透动力学

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Weiwei Kong, Anastasia Neuman, Laetitia Moore, Daeyeon Lee, Robert A. Riggleman and Russell J. Composto*, 
{"title":"聚合物-壁相互作用在双连续纳米多孔结构中的缓慢渗透动力学","authors":"Weiwei Kong,&nbsp;Anastasia Neuman,&nbsp;Laetitia Moore,&nbsp;Daeyeon Lee,&nbsp;Robert A. Riggleman and Russell J. Composto*,&nbsp;","doi":"10.1021/acs.macromol.4c0232610.1021/acs.macromol.4c02326","DOIUrl":null,"url":null,"abstract":"<p >Polymer infiltration is studied in a bicontinuous nanoporous gold (NPG) scaffold. For poly(2-vinylpyridine) (P2VP) with molecular weights (<i>M</i><sub><i>w</i></sub>) ranging from 51k to 940k Da, infiltration is investigated in an NPG with a fixed pore radius (<i>R</i><sub>p</sub> = 34 nm) under moderate confinement (Γ = <i>R</i><sub>g</sub>/<i>R</i><sub>p</sub>) 0.18 to 0.78. The time for 80% infiltration (τ<sub>80%</sub>) scales as <i>M</i><sub>w</sub><sup>1.43</sup>, similar to PS, but weaker than the bulk behavior. Infiltration of P2VP is slower than PS due to stronger P2VP–wall interactions resulting in a physisorbed P2VP layer. This interpretation is supported by the similar scaling of τ<sub>80%</sub> for P2VP and PS, as well as molecular dynamics (MD) simulations. Simulations show that infiltration time scales as <i>M</i><sub>w</sub><sup>1.4</sup> and that infiltration slows as the polymer–wall attraction increases. As <i>M</i><sub><i>w</i></sub> increases, the effective viscosity transitions from greater than to less than the bulk viscosity due to pore narrowing and a reduction in entanglement density. These studies provide new insight into polymer behavior under confinement and a new route for preparing nanocomposites at high filler loadings.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 10","pages":"5058–5070 5058–5070"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer–Wall Interactions Slow Infiltration Dynamics in Bicontinuous, Nanoporous Structures\",\"authors\":\"Weiwei Kong,&nbsp;Anastasia Neuman,&nbsp;Laetitia Moore,&nbsp;Daeyeon Lee,&nbsp;Robert A. Riggleman and Russell J. Composto*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.4c0232610.1021/acs.macromol.4c02326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer infiltration is studied in a bicontinuous nanoporous gold (NPG) scaffold. For poly(2-vinylpyridine) (P2VP) with molecular weights (<i>M</i><sub><i>w</i></sub>) ranging from 51k to 940k Da, infiltration is investigated in an NPG with a fixed pore radius (<i>R</i><sub>p</sub> = 34 nm) under moderate confinement (Γ = <i>R</i><sub>g</sub>/<i>R</i><sub>p</sub>) 0.18 to 0.78. The time for 80% infiltration (τ<sub>80%</sub>) scales as <i>M</i><sub>w</sub><sup>1.43</sup>, similar to PS, but weaker than the bulk behavior. Infiltration of P2VP is slower than PS due to stronger P2VP–wall interactions resulting in a physisorbed P2VP layer. This interpretation is supported by the similar scaling of τ<sub>80%</sub> for P2VP and PS, as well as molecular dynamics (MD) simulations. Simulations show that infiltration time scales as <i>M</i><sub>w</sub><sup>1.4</sup> and that infiltration slows as the polymer–wall attraction increases. As <i>M</i><sub><i>w</i></sub> increases, the effective viscosity transitions from greater than to less than the bulk viscosity due to pore narrowing and a reduction in entanglement density. These studies provide new insight into polymer behavior under confinement and a new route for preparing nanocomposites at high filler loadings.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 10\",\"pages\":\"5058–5070 5058–5070\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02326\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02326","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了聚合物在双连续纳米孔金(NPG)支架中的渗透。对于分子量(Mw)在51k ~ 940k Da之间的聚(2-乙烯基吡啶)(P2VP),在中等约束(Γ = Rg/Rp) 0.18 ~ 0.78下,在固定孔径半径(Rp = 34 nm)的NPG中进行了渗透研究。80%入渗时间(τ80%)的尺度为Mw1.43,与PS相似,但弱于体行为。P2VP的渗透速度比PS慢,这是由于P2VP与壁的相互作用更强,导致P2VP层被物理吸附。这一解释得到了P2VP和PS相似的τ80%标度以及分子动力学(MD)模拟的支持。模拟结果表明,渗透时间尺度为Mw1.4,随着聚合物壁吸引力的增加,渗透速度减慢。随着Mw的增加,由于孔隙缩小和缠结密度的降低,有效粘度从大于小于体粘度转变为小于体粘度。这些研究为聚合物在约束条件下的行为提供了新的见解,并为制备高填料负载的纳米复合材料提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polymer–Wall Interactions Slow Infiltration Dynamics in Bicontinuous, Nanoporous Structures

Polymer–Wall Interactions Slow Infiltration Dynamics in Bicontinuous, Nanoporous Structures

Polymer infiltration is studied in a bicontinuous nanoporous gold (NPG) scaffold. For poly(2-vinylpyridine) (P2VP) with molecular weights (Mw) ranging from 51k to 940k Da, infiltration is investigated in an NPG with a fixed pore radius (Rp = 34 nm) under moderate confinement (Γ = Rg/Rp) 0.18 to 0.78. The time for 80% infiltration (τ80%) scales as Mw1.43, similar to PS, but weaker than the bulk behavior. Infiltration of P2VP is slower than PS due to stronger P2VP–wall interactions resulting in a physisorbed P2VP layer. This interpretation is supported by the similar scaling of τ80% for P2VP and PS, as well as molecular dynamics (MD) simulations. Simulations show that infiltration time scales as Mw1.4 and that infiltration slows as the polymer–wall attraction increases. As Mw increases, the effective viscosity transitions from greater than to less than the bulk viscosity due to pore narrowing and a reduction in entanglement density. These studies provide new insight into polymer behavior under confinement and a new route for preparing nanocomposites at high filler loadings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信