关于成对相交圆排列中的狄根数

IF 1 2区 数学 Q1 MATHEMATICS
Eyal Ackerman, Gábor Damásdi, Balázs Keszegh, Rom Pinchasi, Rebeka Raffay
{"title":"关于成对相交圆排列中的狄根数","authors":"Eyal Ackerman, Gábor Damásdi, Balázs Keszegh, Rom Pinchasi, Rebeka Raffay","doi":"10.1007/s00493-025-00139-1","DOIUrl":null,"url":null,"abstract":"<p>A long-standing open conjecture of Branko Grünbaum from 1972 states that any simple arrangement of <i>n</i> pairwise intersecting pseudocircles in the plane can have at most <span>\\(2n-2\\)</span> digons. Agarwal et al. proved this conjecture for arrangements of pairwise intersecting pseudocircles in which there is a common point surrounded by all pseudocircles. Recently, Felsner, Roch and Scheucher showed that Grünbaum’s conjecture is true for arrangements of pairwise intersecting pseudocircles in which there are three pseudocircles every pair of which create a digon. In this paper we prove this over 50-year-old conjecture of Grünbaum for any simple arrangement of pairwise intersecting circles in the plane.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"56 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Number of Digons in Arrangements of Pairwise Intersecting Circles\",\"authors\":\"Eyal Ackerman, Gábor Damásdi, Balázs Keszegh, Rom Pinchasi, Rebeka Raffay\",\"doi\":\"10.1007/s00493-025-00139-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A long-standing open conjecture of Branko Grünbaum from 1972 states that any simple arrangement of <i>n</i> pairwise intersecting pseudocircles in the plane can have at most <span>\\\\(2n-2\\\\)</span> digons. Agarwal et al. proved this conjecture for arrangements of pairwise intersecting pseudocircles in which there is a common point surrounded by all pseudocircles. Recently, Felsner, Roch and Scheucher showed that Grünbaum’s conjecture is true for arrangements of pairwise intersecting pseudocircles in which there are three pseudocircles every pair of which create a digon. In this paper we prove this over 50-year-old conjecture of Grünbaum for any simple arrangement of pairwise intersecting circles in the plane.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00139-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00139-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Branko grnbaum在1972年提出的一个长期开放猜想指出,平面上n对相交的伪圆的任何简单排列最多只能有\(2n-2\)根。Agarwal等人证明了这一猜想是对相交伪圆的排列,其中有一个公点被所有伪圆包围。最近,Felsner, Roch和Scheucher证明了gr nbaum猜想对成对相交的伪圆的排列是正确的,其中有三个伪圆,每对伪圆产生一个圆。本文证明了平面上任意一对相交圆的简单排列,证明了gr nbaum这个50多年前的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Number of Digons in Arrangements of Pairwise Intersecting Circles

A long-standing open conjecture of Branko Grünbaum from 1972 states that any simple arrangement of n pairwise intersecting pseudocircles in the plane can have at most \(2n-2\) digons. Agarwal et al. proved this conjecture for arrangements of pairwise intersecting pseudocircles in which there is a common point surrounded by all pseudocircles. Recently, Felsner, Roch and Scheucher showed that Grünbaum’s conjecture is true for arrangements of pairwise intersecting pseudocircles in which there are three pseudocircles every pair of which create a digon. In this paper we prove this over 50-year-old conjecture of Grünbaum for any simple arrangement of pairwise intersecting circles in the plane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信