Marc V. Farcasanu, Thais de las Heras Ruiz, Francesca M. Johnson de Sousa Brito, Jamie Soul, Jonathan Coxhead, Matthew J. German, David A. Young, Ana M. Ferreira-Duarte, Katarzyna A. Piróg
{"title":"动态压缩促进组织工程软骨模型的软骨形成。","authors":"Marc V. Farcasanu, Thais de las Heras Ruiz, Francesca M. Johnson de Sousa Brito, Jamie Soul, Jonathan Coxhead, Matthew J. German, David A. Young, Ana M. Ferreira-Duarte, Katarzyna A. Piróg","doi":"10.1002/bit.29026","DOIUrl":null,"url":null,"abstract":"<p>Hyaline cartilage is a dense avascular tissue with low regenerative potential, present at the ends of the diarthrodial joints and in the cartilage growth plate. Skeletal diseases often result from extracellular changes in this tissue; however, studies of these are hindered by the tissue complexity, the difficulty in obtaining human material, and the cost of generating animal models. Recent developments in tissue engineering are opening possibilities to develop mechanoresponsive zonally stratified models of cartilage in vitro. In this study, we optimized a 3D model of cartilage using chondroprogenitor cells cultured for 21 days in 2% agarose hydrogel constructs with daily dynamic compression. Our hydrogel constructs developed pericellular matrices with nanostiffness comparable with native murine tissue and showed increased production of extracellular matrix components and expression of chondrogenic and differentiation markers. Daily dynamic compression resulted in progressive increase in mechanoresponsive gene expression and promoted a juvenile cartilage phenotype, decreasing expression of dedifferentiation and cartilage degradation markers. Our study highlights the potential of hydrogel-enhanced chondrogenesis and proposes an adaptable and scalable in vitro model to study mechanoresponses, intracellular signals, and pericellular matrix involvement in cartilage development and disease.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 9","pages":"2574-2591"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.29026","citationCount":"0","resultStr":"{\"title\":\"Dynamic Compression Improves Chondrogenesis in the Tissue Engineered Model of Cartilage\",\"authors\":\"Marc V. Farcasanu, Thais de las Heras Ruiz, Francesca M. Johnson de Sousa Brito, Jamie Soul, Jonathan Coxhead, Matthew J. German, David A. Young, Ana M. Ferreira-Duarte, Katarzyna A. Piróg\",\"doi\":\"10.1002/bit.29026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hyaline cartilage is a dense avascular tissue with low regenerative potential, present at the ends of the diarthrodial joints and in the cartilage growth plate. Skeletal diseases often result from extracellular changes in this tissue; however, studies of these are hindered by the tissue complexity, the difficulty in obtaining human material, and the cost of generating animal models. Recent developments in tissue engineering are opening possibilities to develop mechanoresponsive zonally stratified models of cartilage in vitro. In this study, we optimized a 3D model of cartilage using chondroprogenitor cells cultured for 21 days in 2% agarose hydrogel constructs with daily dynamic compression. Our hydrogel constructs developed pericellular matrices with nanostiffness comparable with native murine tissue and showed increased production of extracellular matrix components and expression of chondrogenic and differentiation markers. Daily dynamic compression resulted in progressive increase in mechanoresponsive gene expression and promoted a juvenile cartilage phenotype, decreasing expression of dedifferentiation and cartilage degradation markers. Our study highlights the potential of hydrogel-enhanced chondrogenesis and proposes an adaptable and scalable in vitro model to study mechanoresponses, intracellular signals, and pericellular matrix involvement in cartilage development and disease.</p>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"122 9\",\"pages\":\"2574-2591\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.29026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bit.29026\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bit.29026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Dynamic Compression Improves Chondrogenesis in the Tissue Engineered Model of Cartilage
Hyaline cartilage is a dense avascular tissue with low regenerative potential, present at the ends of the diarthrodial joints and in the cartilage growth plate. Skeletal diseases often result from extracellular changes in this tissue; however, studies of these are hindered by the tissue complexity, the difficulty in obtaining human material, and the cost of generating animal models. Recent developments in tissue engineering are opening possibilities to develop mechanoresponsive zonally stratified models of cartilage in vitro. In this study, we optimized a 3D model of cartilage using chondroprogenitor cells cultured for 21 days in 2% agarose hydrogel constructs with daily dynamic compression. Our hydrogel constructs developed pericellular matrices with nanostiffness comparable with native murine tissue and showed increased production of extracellular matrix components and expression of chondrogenic and differentiation markers. Daily dynamic compression resulted in progressive increase in mechanoresponsive gene expression and promoted a juvenile cartilage phenotype, decreasing expression of dedifferentiation and cartilage degradation markers. Our study highlights the potential of hydrogel-enhanced chondrogenesis and proposes an adaptable and scalable in vitro model to study mechanoresponses, intracellular signals, and pericellular matrix involvement in cartilage development and disease.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.