{"title":"环境中重金属控制从检测到分离和回收的进展:新兴的微流体策略","authors":"Xiaoyun Liu, Hongrui Xiang, Jiawei Li, Wenchao Zhang, Feiping Zhao, Qingwei Wang, Meiqing Shi, Yunyan Wang, Xu Yan, Liyuan Chai","doi":"10.1080/10643389.2025.2483534","DOIUrl":null,"url":null,"abstract":"Investigating the fate of heavy metals, especially natural environmental processes, requires innovation and precise technologies that can offer knowledge at the microscopic scale. Breakthrough of the microfluidics involved in heavy metals control has accelerated in recent years along with realization of the ubiquity, non-degradability, bioaccumulation, mobility and reactivity of heavy metals in the environment. This review explores recent advances in microfluidic applications for heavy metal control, spanning detection, separation, and recovery. Among microreactors, droplet-based systems demonstrate exceptional performance in detecting trace contaminants, achieving detection limits below 0.5 µg/L through enhanced mixing and reaction efficiency. For separation, liquid-liquid extraction microreactors stand out, with optimized interfaces yielding extraction efficiencies of up to 99.3% for cadmium (Cd) under specific flow and pH conditions. In the realm of recovery, electrochemical microreactors have shown potential for selective deposition, achieving high recovery rates at optimized current densities and tailored electrode materials. Future work will focus on the design and development of functional integration and scale-up of microfluidic systems/platforms, particularly in terms of the flexibility of microfluidic device design and assembly, as well as the efficiency of mass and heat transfer and reactions. The precise process control characteristics of microfluidic systems make them highly promising for applications in environmental monitoring, pollution control, and resource recovery.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"6 1","pages":"1-21"},"PeriodicalIF":11.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements of heavy metals control in the environment from detection to separation and recovery: Emerging microfluidics strategy\",\"authors\":\"Xiaoyun Liu, Hongrui Xiang, Jiawei Li, Wenchao Zhang, Feiping Zhao, Qingwei Wang, Meiqing Shi, Yunyan Wang, Xu Yan, Liyuan Chai\",\"doi\":\"10.1080/10643389.2025.2483534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating the fate of heavy metals, especially natural environmental processes, requires innovation and precise technologies that can offer knowledge at the microscopic scale. Breakthrough of the microfluidics involved in heavy metals control has accelerated in recent years along with realization of the ubiquity, non-degradability, bioaccumulation, mobility and reactivity of heavy metals in the environment. This review explores recent advances in microfluidic applications for heavy metal control, spanning detection, separation, and recovery. Among microreactors, droplet-based systems demonstrate exceptional performance in detecting trace contaminants, achieving detection limits below 0.5 µg/L through enhanced mixing and reaction efficiency. For separation, liquid-liquid extraction microreactors stand out, with optimized interfaces yielding extraction efficiencies of up to 99.3% for cadmium (Cd) under specific flow and pH conditions. In the realm of recovery, electrochemical microreactors have shown potential for selective deposition, achieving high recovery rates at optimized current densities and tailored electrode materials. Future work will focus on the design and development of functional integration and scale-up of microfluidic systems/platforms, particularly in terms of the flexibility of microfluidic device design and assembly, as well as the efficiency of mass and heat transfer and reactions. The precise process control characteristics of microfluidic systems make them highly promising for applications in environmental monitoring, pollution control, and resource recovery.\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"6 1\",\"pages\":\"1-21\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2025.2483534\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2025.2483534","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Advancements of heavy metals control in the environment from detection to separation and recovery: Emerging microfluidics strategy
Investigating the fate of heavy metals, especially natural environmental processes, requires innovation and precise technologies that can offer knowledge at the microscopic scale. Breakthrough of the microfluidics involved in heavy metals control has accelerated in recent years along with realization of the ubiquity, non-degradability, bioaccumulation, mobility and reactivity of heavy metals in the environment. This review explores recent advances in microfluidic applications for heavy metal control, spanning detection, separation, and recovery. Among microreactors, droplet-based systems demonstrate exceptional performance in detecting trace contaminants, achieving detection limits below 0.5 µg/L through enhanced mixing and reaction efficiency. For separation, liquid-liquid extraction microreactors stand out, with optimized interfaces yielding extraction efficiencies of up to 99.3% for cadmium (Cd) under specific flow and pH conditions. In the realm of recovery, electrochemical microreactors have shown potential for selective deposition, achieving high recovery rates at optimized current densities and tailored electrode materials. Future work will focus on the design and development of functional integration and scale-up of microfluidic systems/platforms, particularly in terms of the flexibility of microfluidic device design and assembly, as well as the efficiency of mass and heat transfer and reactions. The precise process control characteristics of microfluidic systems make them highly promising for applications in environmental monitoring, pollution control, and resource recovery.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.