{"title":"基于贝叶斯优化的胶囊内镜图像多病灶识别的深度集成框架。","authors":"Xudong Guo, Liying Pang, Peiyu Chen, Qinfen Jiang, Yukai Zhong","doi":"10.1007/s11517-025-03380-4","DOIUrl":null,"url":null,"abstract":"<p><p>In order to address the challenges posed by the large number of images acquired during wireless capsule endoscopy examinations and fatigue-induced leakage and misdiagnosis, a deep ensemble framework is proposed, which consists of CA-EfficientNet-B0, ECA-RegNetY, and Swin transformer as base learners. The ensemble model aims to automatically recognize four lesions in capsule endoscopy images, including angioectasia, bleeding, erosions, and polyps. All the three base learners employed transfer learning, with the inclusion of attention modules in EfficientNet-B0 and RegNetY for optimization. The recognition outcomes from the three base learners were subsequently combined and weighted to facilitate automatic recognition of multi-lesion images and normal images of the gastrointestinal (GI) tract. The weights were determined through the Bayesian optimization. The experiment collected a total of 8358 images of 281 cases at Shanghai East Hospital from 2017 to 2021. These images were organized and labeled by clinicians to verify the performance of the algorithm. The experimental results showed that the model achieved an accuracy of 84.31%, m-Precision of 88.60%, m-Recall of 79.36%, and m-F1-score of 81.08%. Compared to mainstream deep learning models, the ensemble model effectively improves the classification performance of GI diseases and can assist clinicians in making initial diagnoses of GI diseases.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3037-3052"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep ensemble framework with Bayesian optimization for multi-lesion recognition in capsule endoscopy images.\",\"authors\":\"Xudong Guo, Liying Pang, Peiyu Chen, Qinfen Jiang, Yukai Zhong\",\"doi\":\"10.1007/s11517-025-03380-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to address the challenges posed by the large number of images acquired during wireless capsule endoscopy examinations and fatigue-induced leakage and misdiagnosis, a deep ensemble framework is proposed, which consists of CA-EfficientNet-B0, ECA-RegNetY, and Swin transformer as base learners. The ensemble model aims to automatically recognize four lesions in capsule endoscopy images, including angioectasia, bleeding, erosions, and polyps. All the three base learners employed transfer learning, with the inclusion of attention modules in EfficientNet-B0 and RegNetY for optimization. The recognition outcomes from the three base learners were subsequently combined and weighted to facilitate automatic recognition of multi-lesion images and normal images of the gastrointestinal (GI) tract. The weights were determined through the Bayesian optimization. The experiment collected a total of 8358 images of 281 cases at Shanghai East Hospital from 2017 to 2021. These images were organized and labeled by clinicians to verify the performance of the algorithm. The experimental results showed that the model achieved an accuracy of 84.31%, m-Precision of 88.60%, m-Recall of 79.36%, and m-F1-score of 81.08%. Compared to mainstream deep learning models, the ensemble model effectively improves the classification performance of GI diseases and can assist clinicians in making initial diagnoses of GI diseases.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"3037-3052\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03380-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03380-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep ensemble framework with Bayesian optimization for multi-lesion recognition in capsule endoscopy images.
In order to address the challenges posed by the large number of images acquired during wireless capsule endoscopy examinations and fatigue-induced leakage and misdiagnosis, a deep ensemble framework is proposed, which consists of CA-EfficientNet-B0, ECA-RegNetY, and Swin transformer as base learners. The ensemble model aims to automatically recognize four lesions in capsule endoscopy images, including angioectasia, bleeding, erosions, and polyps. All the three base learners employed transfer learning, with the inclusion of attention modules in EfficientNet-B0 and RegNetY for optimization. The recognition outcomes from the three base learners were subsequently combined and weighted to facilitate automatic recognition of multi-lesion images and normal images of the gastrointestinal (GI) tract. The weights were determined through the Bayesian optimization. The experiment collected a total of 8358 images of 281 cases at Shanghai East Hospital from 2017 to 2021. These images were organized and labeled by clinicians to verify the performance of the algorithm. The experimental results showed that the model achieved an accuracy of 84.31%, m-Precision of 88.60%, m-Recall of 79.36%, and m-F1-score of 81.08%. Compared to mainstream deep learning models, the ensemble model effectively improves the classification performance of GI diseases and can assist clinicians in making initial diagnoses of GI diseases.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).