Owen A White, Joshua Shur, Francesca Castagnoli, Geoff Charles-Edwards, Brandon Whitcher, David J Collins, Matthew T D Cashmore, Matt G Hall, Spencer A Thomas, Andrew Thompson, Ciara A Harrison, Georgina Hopkinson, Dow-Mu Koh, Jessica M Winfield
{"title":"定量的图像质量指标可以实现临床上应用的MRI人工智能重建的资源高效质量控制。","authors":"Owen A White, Joshua Shur, Francesca Castagnoli, Geoff Charles-Edwards, Brandon Whitcher, David J Collins, Matthew T D Cashmore, Matt G Hall, Spencer A Thomas, Andrew Thompson, Ciara A Harrison, Georgina Hopkinson, Dow-Mu Koh, Jessica M Winfield","doi":"10.1007/s10334-025-01253-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions.</p><p><strong>Materials and methods: </strong>58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance.</p><p><strong>Results: </strong>Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs.</p><p><strong>Discussion: </strong>IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.\",\"authors\":\"Owen A White, Joshua Shur, Francesca Castagnoli, Geoff Charles-Edwards, Brandon Whitcher, David J Collins, Matthew T D Cashmore, Matt G Hall, Spencer A Thomas, Andrew Thompson, Ciara A Harrison, Georgina Hopkinson, Dow-Mu Koh, Jessica M Winfield\",\"doi\":\"10.1007/s10334-025-01253-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions.</p><p><strong>Materials and methods: </strong>58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance.</p><p><strong>Results: </strong>Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs.</p><p><strong>Discussion: </strong>IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-025-01253-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01253-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.
Objective: AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions.
Materials and methods: 58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance.
Results: Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs.
Discussion: IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.