用可穿戴设备预测癫痫发作:一种混合短期和长期视界的伪前瞻性方法。

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY
Epilepsia Pub Date : 2025-05-24 DOI:10.1111/epi.18466
Mona Nasseri, Rachel E Stirling, Pedro F Viana, Jie Cui, Ewan Nurse, Philippa J Karoly, Vaclav Kremen, Matthias Dümpelmann, Gregory A Worrell, Dean R Freestone, Mark P Richardson, Benjamin H Brinkmann
{"title":"用可穿戴设备预测癫痫发作:一种混合短期和长期视界的伪前瞻性方法。","authors":"Mona Nasseri, Rachel E Stirling, Pedro F Viana, Jie Cui, Ewan Nurse, Philippa J Karoly, Vaclav Kremen, Matthias Dümpelmann, Gregory A Worrell, Dean R Freestone, Mark P Richardson, Benjamin H Brinkmann","doi":"10.1111/epi.18466","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Seizure unpredictability can be debilitating and dangerous for people with epilepsy. Accurate seizure forecasters could improve quality of life for those with epilepsy but must be practical for long-term use. This study presents the first validation of a seizure-forecasting system using ultra-long-term, non-invasive wearable data.</p><p><strong>Methods: </strong>Eleven participants with epilepsy were recruited for continuous monitoring, capturing heart rate and step count via wrist-worn devices and seizures via electroencephalography (average recording duration of 337 days). Two hybrid models-combining machine learning and cycle-based methods-were proposed to forecast seizures at both short (minutes) and long (up to 44 days) horizons.</p><p><strong>Results: </strong>The Seizure Warning System (SWS), designed for forecasting near-term seizures, and the Seizure Risk System (SRS), designed for forecasting long-term risk, both outperformed traditional models. In addition, the SRS reduced high-risk time by 29% while increasing sensitivity by 11%.</p><p><strong>Significance: </strong>These improvements mark a significant advancement in making seizure forecasting more practical and effective.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting epileptic seizures with wearable devices: A hybrid short- and long-horizon pseudo-prospective approach.\",\"authors\":\"Mona Nasseri, Rachel E Stirling, Pedro F Viana, Jie Cui, Ewan Nurse, Philippa J Karoly, Vaclav Kremen, Matthias Dümpelmann, Gregory A Worrell, Dean R Freestone, Mark P Richardson, Benjamin H Brinkmann\",\"doi\":\"10.1111/epi.18466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Seizure unpredictability can be debilitating and dangerous for people with epilepsy. Accurate seizure forecasters could improve quality of life for those with epilepsy but must be practical for long-term use. This study presents the first validation of a seizure-forecasting system using ultra-long-term, non-invasive wearable data.</p><p><strong>Methods: </strong>Eleven participants with epilepsy were recruited for continuous monitoring, capturing heart rate and step count via wrist-worn devices and seizures via electroencephalography (average recording duration of 337 days). Two hybrid models-combining machine learning and cycle-based methods-were proposed to forecast seizures at both short (minutes) and long (up to 44 days) horizons.</p><p><strong>Results: </strong>The Seizure Warning System (SWS), designed for forecasting near-term seizures, and the Seizure Risk System (SRS), designed for forecasting long-term risk, both outperformed traditional models. In addition, the SRS reduced high-risk time by 29% while increasing sensitivity by 11%.</p><p><strong>Significance: </strong>These improvements mark a significant advancement in making seizure forecasting more practical and effective.</p>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/epi.18466\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18466","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:癫痫发作的不可预测性可能使癫痫患者虚弱和危险。准确的癫痫发作预测可以提高癫痫患者的生活质量,但必须长期使用。本研究首次验证了使用超长期、非侵入性可穿戴数据的癫痫预测系统。方法:招募11名癫痫患者进行持续监测,通过腕带设备捕获心率和步数,通过脑电图捕获癫痫发作(平均记录时间337天)。两种混合模型——结合机器学习和基于周期的方法——被提出用于预测短期(几分钟)和长期(长达44天)的癫痫发作。结果:用于预测近期癫痫发作的癫痫发作预警系统(SWS)和用于预测长期风险的癫痫发作风险系统(SRS)均优于传统模型。此外,SRS将高危时间缩短了29%,同时将敏感性提高了11%。意义:这些改进标志着癫痫发作预测更加实用和有效的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting epileptic seizures with wearable devices: A hybrid short- and long-horizon pseudo-prospective approach.

Objective: Seizure unpredictability can be debilitating and dangerous for people with epilepsy. Accurate seizure forecasters could improve quality of life for those with epilepsy but must be practical for long-term use. This study presents the first validation of a seizure-forecasting system using ultra-long-term, non-invasive wearable data.

Methods: Eleven participants with epilepsy were recruited for continuous monitoring, capturing heart rate and step count via wrist-worn devices and seizures via electroencephalography (average recording duration of 337 days). Two hybrid models-combining machine learning and cycle-based methods-were proposed to forecast seizures at both short (minutes) and long (up to 44 days) horizons.

Results: The Seizure Warning System (SWS), designed for forecasting near-term seizures, and the Seizure Risk System (SRS), designed for forecasting long-term risk, both outperformed traditional models. In addition, the SRS reduced high-risk time by 29% while increasing sensitivity by 11%.

Significance: These improvements mark a significant advancement in making seizure forecasting more practical and effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信