磁弹性系统的正则性与稳定性

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Jaime E. Muñoz Rivera, Reinhard Racke
{"title":"磁弹性系统的正则性与稳定性","authors":"Jaime E. Muñoz Rivera,&nbsp;Reinhard Racke","doi":"10.1007/s00245-025-10271-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the mathematical model for a plate in a bounded reference configuration <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span>, first with <span>\\(n=2\\)</span>, which is interacting with <span>\\(n=2\\)</span> magnetic fields. The latter have a damping effect. It will be shown that the arising system generates an analytic semigroup and that the estimated exponential decay rate tends to zero if the <i>n</i> constant directing magnetic vectors tend to become linearly dependent. Then, an analogous model for <span>\\(n=3\\)</span> will be considered. In the case that there are less than <i>n</i> magnetic fields we prove the strong stability exemplarily for cubes.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity and Stabilization of Magneto-Elastic Systems\",\"authors\":\"Jaime E. Muñoz Rivera,&nbsp;Reinhard Racke\",\"doi\":\"10.1007/s00245-025-10271-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the mathematical model for a plate in a bounded reference configuration <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^n\\\\)</span>, first with <span>\\\\(n=2\\\\)</span>, which is interacting with <span>\\\\(n=2\\\\)</span> magnetic fields. The latter have a damping effect. It will be shown that the arising system generates an analytic semigroup and that the estimated exponential decay rate tends to zero if the <i>n</i> constant directing magnetic vectors tend to become linearly dependent. Then, an analogous model for <span>\\\\(n=3\\\\)</span> will be considered. In the case that there are less than <i>n</i> magnetic fields we prove the strong stability exemplarily for cubes.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10271-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10271-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在有界参考构型\(\Omega \subset \mathbb {R}^n\)中的板的数学模型,首先考虑与\(n=2\)磁场相互作用的\(n=2\)。后者有阻尼作用。我们将证明,产生的系统产生一个解析半群,如果n个常数定向磁矢量趋于线性相关,则估计的指数衰减率趋于零。然后,将考虑\(n=3\)的类似模型。在磁场小于n的情况下,我们举例证明了立方体的强稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity and Stabilization of Magneto-Elastic Systems

We consider the mathematical model for a plate in a bounded reference configuration \(\Omega \subset \mathbb {R}^n\), first with \(n=2\), which is interacting with \(n=2\) magnetic fields. The latter have a damping effect. It will be shown that the arising system generates an analytic semigroup and that the estimated exponential decay rate tends to zero if the n constant directing magnetic vectors tend to become linearly dependent. Then, an analogous model for \(n=3\) will be considered. In the case that there are less than n magnetic fields we prove the strong stability exemplarily for cubes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信