{"title":"神经网络辅助NILM (NNAN)分解:用迭代减法揭示家电消费模式","authors":"Yacine Belguermi, Patrice Wira, Gilles Hermann","doi":"10.1016/j.mlwa.2025.100667","DOIUrl":null,"url":null,"abstract":"<div><div>Non-Intrusive Load Monitoring (NILM) is a method to decompose overall electricity consumption into individual appliance-level data, utilizing the primary meter’s readings without additional sensors on each device. This article introduces a novel approach which is a Neural Network-Aided NILM (NNAN), focusing on revealing appliance consumption patterns by following a sequential subtraction method. Our goal is to tackle the issue where high-power and highly-used appliances make it difficult for neural networks to accurately separate the usage of lower-power and less-used appliances. We mainly employ Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) using inception blocks as key components. Our proposed architecture is validated on three public datasets that are AMPds2, ECO and UK-DALE. The NNAN model showed promising results, achieving disaggregation accuracy improvements of up to 5.13% on AMPds2, 3.79% on ECO, and 9.55% on UK-DALE compared to the reference methods. Additionally, NNAN reduces model complexity, requiring up to 74% fewer parameters than traditional deep learning approaches, leading to improved computational efficiency. Finally, NNAN demonstrated a reduced correlation between appliance usage rates and disaggregation accuracies.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100667"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network-Aided NILM (NNAN) disaggregation: Revealing appliance consumption patterns with iterative subtraction\",\"authors\":\"Yacine Belguermi, Patrice Wira, Gilles Hermann\",\"doi\":\"10.1016/j.mlwa.2025.100667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-Intrusive Load Monitoring (NILM) is a method to decompose overall electricity consumption into individual appliance-level data, utilizing the primary meter’s readings without additional sensors on each device. This article introduces a novel approach which is a Neural Network-Aided NILM (NNAN), focusing on revealing appliance consumption patterns by following a sequential subtraction method. Our goal is to tackle the issue where high-power and highly-used appliances make it difficult for neural networks to accurately separate the usage of lower-power and less-used appliances. We mainly employ Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) using inception blocks as key components. Our proposed architecture is validated on three public datasets that are AMPds2, ECO and UK-DALE. The NNAN model showed promising results, achieving disaggregation accuracy improvements of up to 5.13% on AMPds2, 3.79% on ECO, and 9.55% on UK-DALE compared to the reference methods. Additionally, NNAN reduces model complexity, requiring up to 74% fewer parameters than traditional deep learning approaches, leading to improved computational efficiency. Finally, NNAN demonstrated a reduced correlation between appliance usage rates and disaggregation accuracies.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"20 \",\"pages\":\"Article 100667\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025000507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Intrusive Load Monitoring (NILM) is a method to decompose overall electricity consumption into individual appliance-level data, utilizing the primary meter’s readings without additional sensors on each device. This article introduces a novel approach which is a Neural Network-Aided NILM (NNAN), focusing on revealing appliance consumption patterns by following a sequential subtraction method. Our goal is to tackle the issue where high-power and highly-used appliances make it difficult for neural networks to accurately separate the usage of lower-power and less-used appliances. We mainly employ Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) using inception blocks as key components. Our proposed architecture is validated on three public datasets that are AMPds2, ECO and UK-DALE. The NNAN model showed promising results, achieving disaggregation accuracy improvements of up to 5.13% on AMPds2, 3.79% on ECO, and 9.55% on UK-DALE compared to the reference methods. Additionally, NNAN reduces model complexity, requiring up to 74% fewer parameters than traditional deep learning approaches, leading to improved computational efficiency. Finally, NNAN demonstrated a reduced correlation between appliance usage rates and disaggregation accuracies.