驯服最大权重、相对类型和估值

IF 1.5 1区 数学 Q1 MATHEMATICS
Shijie Bao , Qi'an Guan , Zhitong Mi , Zheng Yuan
{"title":"驯服最大权重、相对类型和估值","authors":"Shijie Bao ,&nbsp;Qi'an Guan ,&nbsp;Zhitong Mi ,&nbsp;Zheng Yuan","doi":"10.1016/j.aim.2025.110364","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we obtain a class of tame maximal weights (Zhou weights). Using Tian functions (the function of jumping numbers with respect to the exponents of a holomorphic function or the multiples of a plurisubharmonic function) as a main tool, we establish an expression of relative types (Zhou numbers) to these tame maximal weights in integral form, which shows that the relative types satisfy tropical multiplicativity and tropical additivity. Thus, the relative types to Zhou weights are valuations (Zhou valuations) on the ring of germs of holomorphic functions. We use Tian functions and Zhou numbers to measure the singularities of plurisubharmonic functions, involving jumping numbers and multiplier ideal sheaves. Especially, the relative types to Zhou weights characterize the division relations of the ring of germs of holomorphic functions. Finally, we consider a global version of Zhou weights on domains in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, which is a generalization of the pluricomplex Green functions, and we obtain some properties of them, including continuity and some approximation results.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110364"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tame maximal weights, relative types and valuations\",\"authors\":\"Shijie Bao ,&nbsp;Qi'an Guan ,&nbsp;Zhitong Mi ,&nbsp;Zheng Yuan\",\"doi\":\"10.1016/j.aim.2025.110364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we obtain a class of tame maximal weights (Zhou weights). Using Tian functions (the function of jumping numbers with respect to the exponents of a holomorphic function or the multiples of a plurisubharmonic function) as a main tool, we establish an expression of relative types (Zhou numbers) to these tame maximal weights in integral form, which shows that the relative types satisfy tropical multiplicativity and tropical additivity. Thus, the relative types to Zhou weights are valuations (Zhou valuations) on the ring of germs of holomorphic functions. We use Tian functions and Zhou numbers to measure the singularities of plurisubharmonic functions, involving jumping numbers and multiplier ideal sheaves. Especially, the relative types to Zhou weights characterize the division relations of the ring of germs of holomorphic functions. Finally, we consider a global version of Zhou weights on domains in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, which is a generalization of the pluricomplex Green functions, and we obtain some properties of them, including continuity and some approximation results.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"477 \",\"pages\":\"Article 110364\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002622\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002622","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们得到了一类驯服的极大权值(周权值)。以Tian函数(关于全纯函数的指数或多次调和函数的倍数的跳变数的函数)为主要工具,建立了这些最大权值的相对类型(周数)的积分表达式,证明了相对类型满足热带可乘性和热带可加性。因此,周权的相对类型是全纯函数胚芽环上的赋值(周赋值)。我们使用Tian函数和Zhou数来度量涉及跳数和乘法器理想束的多次谐波函数的奇异性。特别是对周权的相对类型表征了全纯函数的胚芽环的划分关系。最后,我们考虑了Cn域上周权值的一个全局版本,它是复数Green函数的一种推广,我们得到了它的一些性质,包括连续性和一些近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tame maximal weights, relative types and valuations
In this article, we obtain a class of tame maximal weights (Zhou weights). Using Tian functions (the function of jumping numbers with respect to the exponents of a holomorphic function or the multiples of a plurisubharmonic function) as a main tool, we establish an expression of relative types (Zhou numbers) to these tame maximal weights in integral form, which shows that the relative types satisfy tropical multiplicativity and tropical additivity. Thus, the relative types to Zhou weights are valuations (Zhou valuations) on the ring of germs of holomorphic functions. We use Tian functions and Zhou numbers to measure the singularities of plurisubharmonic functions, involving jumping numbers and multiplier ideal sheaves. Especially, the relative types to Zhou weights characterize the division relations of the ring of germs of holomorphic functions. Finally, we consider a global version of Zhou weights on domains in Cn, which is a generalization of the pluricomplex Green functions, and we obtain some properties of them, including continuity and some approximation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信