复杂卡坦几何的特征形式2

IF 1.5 1区 数学 Q1 MATHEMATICS
Benjamin McKay
{"title":"复杂卡坦几何的特征形式2","authors":"Benjamin McKay","doi":"10.1016/j.aim.2025.110360","DOIUrl":null,"url":null,"abstract":"<div><div>Characteristic class relations in Dolbeault cohomology follow from the existence of a holomorphic Cartan geometry (for example, a holomorphic conformal structure or a holomorphic projective connection). These relations can be calculated directly from the representation theory of the structure group, without selecting any metric or connection or having any knowledge of the Dolbeault cohomology groups of the manifold. This paper improves on its predecessor <span><span>[35]</span></span> by allowing noncompact and non-Kähler manifolds and by deriving invariants in cohomology of vector bundles, not just in scalar Dolbeault cohomology, and computing relations involving Chern–Simons invariants in Dolbeault cohomology. For the geometric structures previously considered in its predecessor, this paper gives stronger results and simplifies the computations. It gives the first results on Chern–Simons invariants of Cartan geometries.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110360"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic forms of complex Cartan geometries II\",\"authors\":\"Benjamin McKay\",\"doi\":\"10.1016/j.aim.2025.110360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Characteristic class relations in Dolbeault cohomology follow from the existence of a holomorphic Cartan geometry (for example, a holomorphic conformal structure or a holomorphic projective connection). These relations can be calculated directly from the representation theory of the structure group, without selecting any metric or connection or having any knowledge of the Dolbeault cohomology groups of the manifold. This paper improves on its predecessor <span><span>[35]</span></span> by allowing noncompact and non-Kähler manifolds and by deriving invariants in cohomology of vector bundles, not just in scalar Dolbeault cohomology, and computing relations involving Chern–Simons invariants in Dolbeault cohomology. For the geometric structures previously considered in its predecessor, this paper gives stronger results and simplifies the computations. It gives the first results on Chern–Simons invariants of Cartan geometries.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"477 \",\"pages\":\"Article 110360\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002580\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002580","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Dolbeault上同调中的特征类关系是从全纯卡尔坦几何(如全纯共形结构或全纯射影连接)的存在出发的。这些关系可以直接从结构群的表示理论中计算出来,而不需要选择任何度量或连接,也不需要任何流形的Dolbeault上同调群的知识。本文在前人的基础上改进了[35],允许非紧流形和non-Kähler流形,推导了向量束上同调中的不变量,而不仅仅是标量Dolbeault上同调中的不变量,以及Dolbeault上同调中涉及chen - simons不变量的计算关系。对于前人所考虑的几何结构,本文给出了更强的结果,简化了计算。给出了Cartan几何的chen - simons不变量的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic forms of complex Cartan geometries II
Characteristic class relations in Dolbeault cohomology follow from the existence of a holomorphic Cartan geometry (for example, a holomorphic conformal structure or a holomorphic projective connection). These relations can be calculated directly from the representation theory of the structure group, without selecting any metric or connection or having any knowledge of the Dolbeault cohomology groups of the manifold. This paper improves on its predecessor [35] by allowing noncompact and non-Kähler manifolds and by deriving invariants in cohomology of vector bundles, not just in scalar Dolbeault cohomology, and computing relations involving Chern–Simons invariants in Dolbeault cohomology. For the geometric structures previously considered in its predecessor, this paper gives stronger results and simplifies the computations. It gives the first results on Chern–Simons invariants of Cartan geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信