non-Kähler Calabi-Yau度规的线性稳定性

IF 1.5 1区 数学 Q1 MATHEMATICS
Kuan-Hui Lee
{"title":"non-Kähler Calabi-Yau度规的线性稳定性","authors":"Kuan-Hui Lee","doi":"10.1016/j.aim.2025.110366","DOIUrl":null,"url":null,"abstract":"<div><div>Non-Kähler Calabi-Yau theory is a newly developed subject and it arises naturally in mathematical physics and generalized geometry. The relevant geometries are pluriclosed metrics which are critical points of the generalized Einstein–Hilbert action which is an extension of Perelman's <span><math><mi>F</mi></math></span>-functional. In this work, we study the critical points of the generalized Einstein-Hilbert action and discuss the stability of critical points which are defined as pluriclosed steady solitons. We proved that all compact Bismut–Hermitian–Einstein metrics are linearly stable which is non-Kähler analogue of the stability results of Ricci solitons from Tian, Zhu <span><span>[27]</span></span> and Hall, Murphy <span><span>[10]</span></span>, Koiso <span><span>[13]</span></span>. In addition, all compact Bismut-flat pluriclosed metrics with <span><math><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-positive Ricci curvature are strictly linearly stable when the complex structure is fixed.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"477 ","pages":"Article 110366"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The linear stability of non-Kähler Calabi-Yau metrics\",\"authors\":\"Kuan-Hui Lee\",\"doi\":\"10.1016/j.aim.2025.110366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-Kähler Calabi-Yau theory is a newly developed subject and it arises naturally in mathematical physics and generalized geometry. The relevant geometries are pluriclosed metrics which are critical points of the generalized Einstein–Hilbert action which is an extension of Perelman's <span><math><mi>F</mi></math></span>-functional. In this work, we study the critical points of the generalized Einstein-Hilbert action and discuss the stability of critical points which are defined as pluriclosed steady solitons. We proved that all compact Bismut–Hermitian–Einstein metrics are linearly stable which is non-Kähler analogue of the stability results of Ricci solitons from Tian, Zhu <span><span>[27]</span></span> and Hall, Murphy <span><span>[10]</span></span>, Koiso <span><span>[13]</span></span>. In addition, all compact Bismut-flat pluriclosed metrics with <span><math><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-positive Ricci curvature are strictly linearly stable when the complex structure is fixed.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"477 \",\"pages\":\"Article 110366\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825002646\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002646","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Non-Kähler Calabi-Yau理论是在数学物理和广义几何中自然产生的一门新兴学科。相关几何是广义爱因斯坦-希尔伯特作用的临界点,广义爱因斯坦-希尔伯特作用是佩雷尔曼f泛函的扩展。本文研究了广义Einstein-Hilbert作用的临界点,讨论了定义为多闭稳定孤子的临界点的稳定性。我们证明了所有紧化bismut - hermitii - einstein度量都是线性稳定的,这是non-Kähler类似于Tian, Zhu[27]和Hall, Murphy [10], Koiso[13]的Ricci孤子的稳定性结果。此外,当复杂结构固定时,所有具有(2n−1)正Ricci曲率的紧致bismuti -flat多闭度量都是严格线性稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The linear stability of non-Kähler Calabi-Yau metrics
Non-Kähler Calabi-Yau theory is a newly developed subject and it arises naturally in mathematical physics and generalized geometry. The relevant geometries are pluriclosed metrics which are critical points of the generalized Einstein–Hilbert action which is an extension of Perelman's F-functional. In this work, we study the critical points of the generalized Einstein-Hilbert action and discuss the stability of critical points which are defined as pluriclosed steady solitons. We proved that all compact Bismut–Hermitian–Einstein metrics are linearly stable which is non-Kähler analogue of the stability results of Ricci solitons from Tian, Zhu [27] and Hall, Murphy [10], Koiso [13]. In addition, all compact Bismut-flat pluriclosed metrics with (2n1)-positive Ricci curvature are strictly linearly stable when the complex structure is fixed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信