{"title":"基于光伏和电池储能的配电网电动汽车充电站多目标充电调度","authors":"Sigma Ray , Kumari Kasturi , Manas Ranjan Nayak","doi":"10.1016/j.geits.2025.100296","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, with the increasing demand of the electric vehicle (EV) in transportation, the power grid faces critical challenges in meeting the extra power demand. Companies are focusing on expanding EV charging infrastructure to meet customer requirements. Ensuring power supply security, reliability, and economics for EV charging stations remains a challenge, despite efforts to align photovoltaic (PV) and battery energy storage system (BESS) based designs with distribution system requirements. A criteria weight ranking mechanism has been designed to accept charging requests for EVs depending on the criteria weights specified by the EV owner. This paper uses a multi-objective remora optimization algorithm (MOROA) to determine the optimal location of two electric vehicle charging stations (EVCS) in the distribution system, and capacity of PV & BESS units in two EVCS for optimizing three conflicting objective functions, such as (1) minimizing total power loss; (2) minimizing annual substation power cost, and annual capital, operation & maintenance cost of the PV and BESS, and (3) minimizing emission from upstream grid. Moreover, the EVs are also scheduled optimally at each charging station. The effectiveness of these methodologies has been demonstrated through four case studies using IEEE 33 bus radial distribution system (RDS). Furthermore, the smart EV charge scheduling reduces the overall load burden on the grid network and the benefit of EVCS operators and EV owners.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 4","pages":"Article 100296"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective electric vehicle charge scheduling for photovoltaic and battery energy storage based electric vehicle charging stations in distribution network\",\"authors\":\"Sigma Ray , Kumari Kasturi , Manas Ranjan Nayak\",\"doi\":\"10.1016/j.geits.2025.100296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, with the increasing demand of the electric vehicle (EV) in transportation, the power grid faces critical challenges in meeting the extra power demand. Companies are focusing on expanding EV charging infrastructure to meet customer requirements. Ensuring power supply security, reliability, and economics for EV charging stations remains a challenge, despite efforts to align photovoltaic (PV) and battery energy storage system (BESS) based designs with distribution system requirements. A criteria weight ranking mechanism has been designed to accept charging requests for EVs depending on the criteria weights specified by the EV owner. This paper uses a multi-objective remora optimization algorithm (MOROA) to determine the optimal location of two electric vehicle charging stations (EVCS) in the distribution system, and capacity of PV & BESS units in two EVCS for optimizing three conflicting objective functions, such as (1) minimizing total power loss; (2) minimizing annual substation power cost, and annual capital, operation & maintenance cost of the PV and BESS, and (3) minimizing emission from upstream grid. Moreover, the EVs are also scheduled optimally at each charging station. The effectiveness of these methodologies has been demonstrated through four case studies using IEEE 33 bus radial distribution system (RDS). Furthermore, the smart EV charge scheduling reduces the overall load burden on the grid network and the benefit of EVCS operators and EV owners.</div></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"4 4\",\"pages\":\"Article 100296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153725000465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153725000465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective electric vehicle charge scheduling for photovoltaic and battery energy storage based electric vehicle charging stations in distribution network
Recently, with the increasing demand of the electric vehicle (EV) in transportation, the power grid faces critical challenges in meeting the extra power demand. Companies are focusing on expanding EV charging infrastructure to meet customer requirements. Ensuring power supply security, reliability, and economics for EV charging stations remains a challenge, despite efforts to align photovoltaic (PV) and battery energy storage system (BESS) based designs with distribution system requirements. A criteria weight ranking mechanism has been designed to accept charging requests for EVs depending on the criteria weights specified by the EV owner. This paper uses a multi-objective remora optimization algorithm (MOROA) to determine the optimal location of two electric vehicle charging stations (EVCS) in the distribution system, and capacity of PV & BESS units in two EVCS for optimizing three conflicting objective functions, such as (1) minimizing total power loss; (2) minimizing annual substation power cost, and annual capital, operation & maintenance cost of the PV and BESS, and (3) minimizing emission from upstream grid. Moreover, the EVs are also scheduled optimally at each charging station. The effectiveness of these methodologies has been demonstrated through four case studies using IEEE 33 bus radial distribution system (RDS). Furthermore, the smart EV charge scheduling reduces the overall load burden on the grid network and the benefit of EVCS operators and EV owners.