MDLPCC:错位感知的动态激光雷达点云压缩

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ao Luo , Linxin Song , Keisuke Nonaka , Jinming Liu , Kyohei Unno , Kohei Matsuzaki , Heming Sun , Jiro Katto
{"title":"MDLPCC:错位感知的动态激光雷达点云压缩","authors":"Ao Luo ,&nbsp;Linxin Song ,&nbsp;Keisuke Nonaka ,&nbsp;Jinming Liu ,&nbsp;Kyohei Unno ,&nbsp;Kohei Matsuzaki ,&nbsp;Heming Sun ,&nbsp;Jiro Katto","doi":"10.1016/j.jvcir.2025.104481","DOIUrl":null,"url":null,"abstract":"<div><div>LiDAR point cloud plays an important role in various real-world areas. It is usually generated as sequences by LiDAR on moving vehicles. Regarding the large data size of LiDAR point clouds, Dynamic Point Cloud Compression (DPCC) methods are developed to reduce transmission and storage data costs. However, most existing DPCC methods neglect the intrinsic misalignment in LiDAR point cloud sequences, limiting the rate–distortion (RD) performance. This paper proposes a Misalignment-aware Dynamic LiDAR Point Cloud Compression method (MDLPCC), which alleviates the misalignment problem in both macroscope and microscope. MDLPCC exploits a global transformation (GlobTrans) method to eliminate the macroscopic misalignment problem, which is the obvious gap between two continuous point cloud frames. MDLPCC also uses a spatial–temporal mixed structure to alleviate the microscopic misalignment, which still exists in the detailed parts of two point clouds after GlobTrans. The experiments on our MDLPCC show superior performance over existing point cloud compression methods.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"110 ","pages":"Article 104481"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MDLPCC: Misalignment-aware dynamic LiDAR point cloud compression\",\"authors\":\"Ao Luo ,&nbsp;Linxin Song ,&nbsp;Keisuke Nonaka ,&nbsp;Jinming Liu ,&nbsp;Kyohei Unno ,&nbsp;Kohei Matsuzaki ,&nbsp;Heming Sun ,&nbsp;Jiro Katto\",\"doi\":\"10.1016/j.jvcir.2025.104481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LiDAR point cloud plays an important role in various real-world areas. It is usually generated as sequences by LiDAR on moving vehicles. Regarding the large data size of LiDAR point clouds, Dynamic Point Cloud Compression (DPCC) methods are developed to reduce transmission and storage data costs. However, most existing DPCC methods neglect the intrinsic misalignment in LiDAR point cloud sequences, limiting the rate–distortion (RD) performance. This paper proposes a Misalignment-aware Dynamic LiDAR Point Cloud Compression method (MDLPCC), which alleviates the misalignment problem in both macroscope and microscope. MDLPCC exploits a global transformation (GlobTrans) method to eliminate the macroscopic misalignment problem, which is the obvious gap between two continuous point cloud frames. MDLPCC also uses a spatial–temporal mixed structure to alleviate the microscopic misalignment, which still exists in the detailed parts of two point clouds after GlobTrans. The experiments on our MDLPCC show superior performance over existing point cloud compression methods.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"110 \",\"pages\":\"Article 104481\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325000951\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000951","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

激光雷达点云在现实世界的各个领域发挥着重要的作用。它通常是由激光雷达在移动车辆上生成的序列。针对激光雷达点云数据量大的特点,为了降低数据传输和存储成本,提出了动态点云压缩(DPCC)方法。然而,大多数现有的DPCC方法忽略了激光雷达点云序列的固有不对准,限制了率失真(RD)性能。本文提出了一种能够感知误差的动态激光雷达点云压缩方法(MDLPCC),该方法可以有效地缓解宏观和显微镜的误差问题。MDLPCC利用全局变换(GlobTrans)方法消除了宏观不对准问题,即两个连续点云帧之间的明显间隙。MDLPCC还采用了一种时空混合结构来缓解在GlobTrans之后两点云的细节部分仍然存在的微观失调。在MDLPCC上的实验表明,与现有的点云压缩方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MDLPCC: Misalignment-aware dynamic LiDAR point cloud compression
LiDAR point cloud plays an important role in various real-world areas. It is usually generated as sequences by LiDAR on moving vehicles. Regarding the large data size of LiDAR point clouds, Dynamic Point Cloud Compression (DPCC) methods are developed to reduce transmission and storage data costs. However, most existing DPCC methods neglect the intrinsic misalignment in LiDAR point cloud sequences, limiting the rate–distortion (RD) performance. This paper proposes a Misalignment-aware Dynamic LiDAR Point Cloud Compression method (MDLPCC), which alleviates the misalignment problem in both macroscope and microscope. MDLPCC exploits a global transformation (GlobTrans) method to eliminate the macroscopic misalignment problem, which is the obvious gap between two continuous point cloud frames. MDLPCC also uses a spatial–temporal mixed structure to alleviate the microscopic misalignment, which still exists in the detailed parts of two point clouds after GlobTrans. The experiments on our MDLPCC show superior performance over existing point cloud compression methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信