mxoy修饰ZnS纳米颗粒(M = Fe, Co)的晶格收缩促进锌-空气电池的氧还原

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shiqing Huang, Jiaming Wang, Zhenyang Li, Shitao Wang, Yan Huang*, Lirong Zheng* and Dapeng Cao*, 
{"title":"mxoy修饰ZnS纳米颗粒(M = Fe, Co)的晶格收缩促进锌-空气电池的氧还原","authors":"Shiqing Huang,&nbsp;Jiaming Wang,&nbsp;Zhenyang Li,&nbsp;Shitao Wang,&nbsp;Yan Huang*,&nbsp;Lirong Zheng* and Dapeng Cao*,&nbsp;","doi":"10.1021/acsaem.5c0073910.1021/acsaem.5c00739","DOIUrl":null,"url":null,"abstract":"<p >The limited application of rechargeable zinc–air batteries (ZAB) is mainly attributed to the sluggish kinetics of the oxygen reduction reaction (ORR) in an air cathode. Therefore, designing catalysts to improve the ORR kinetics is significantly important. Herein, we synthesize metal oxide-decorated ZnS nanoparticles (NPs) supported on nitrogen-doped porous carbon (denoted as M<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-N-C; M = Fe, Co) by a two-step pyrolysis strategy. The lattice contraction of ZnS NPs induced by the introduction of the M<sub><i>x</i></sub>O<sub><i>y</i></sub> moiety is confirmed by systematic characterizations, including XRD, TEM, and XANES. The Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC/Co<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC catalysts exhibit an apparently improved ORR activity with <i>E</i><sub>1/2</sub> of 0.895/0.86 V, respectively, compared to the pure ZnS-N-C reference sample (0.75 V). Importantly, the Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC ORR catalyst-based ZAB also delivered a high power density of 243 mW cm<sup>–2</sup> and a long durability over 400 h. These excellent properties of M<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC catalysts were attributed to the fact that introduction of M<sub><i>x</i></sub>O<sub><i>y</i></sub> leads to the lattice contraction of ZnS NPs, which efficiently optimizes the electronic structure of the as-prepared samples and therefore improves the ORR performance. This paper provides a useful strategy of using lattice strain to regulate the electronic structure of catalysts for boosting their electrochemical properties.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 10","pages":"6662–6669 6662–6669"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice Contraction of MxOy-Decorated ZnS Nanoparticles (M = Fe, Co) Boosting Oxygen Reduction for Zinc–Air Batteries\",\"authors\":\"Shiqing Huang,&nbsp;Jiaming Wang,&nbsp;Zhenyang Li,&nbsp;Shitao Wang,&nbsp;Yan Huang*,&nbsp;Lirong Zheng* and Dapeng Cao*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0073910.1021/acsaem.5c00739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The limited application of rechargeable zinc–air batteries (ZAB) is mainly attributed to the sluggish kinetics of the oxygen reduction reaction (ORR) in an air cathode. Therefore, designing catalysts to improve the ORR kinetics is significantly important. Herein, we synthesize metal oxide-decorated ZnS nanoparticles (NPs) supported on nitrogen-doped porous carbon (denoted as M<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-N-C; M = Fe, Co) by a two-step pyrolysis strategy. The lattice contraction of ZnS NPs induced by the introduction of the M<sub><i>x</i></sub>O<sub><i>y</i></sub> moiety is confirmed by systematic characterizations, including XRD, TEM, and XANES. The Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC/Co<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC catalysts exhibit an apparently improved ORR activity with <i>E</i><sub>1/2</sub> of 0.895/0.86 V, respectively, compared to the pure ZnS-N-C reference sample (0.75 V). Importantly, the Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC ORR catalyst-based ZAB also delivered a high power density of 243 mW cm<sup>–2</sup> and a long durability over 400 h. These excellent properties of M<sub><i>x</i></sub>O<sub><i>y</i></sub>-ZnS-NC catalysts were attributed to the fact that introduction of M<sub><i>x</i></sub>O<sub><i>y</i></sub> leads to the lattice contraction of ZnS NPs, which efficiently optimizes the electronic structure of the as-prepared samples and therefore improves the ORR performance. This paper provides a useful strategy of using lattice strain to regulate the electronic structure of catalysts for boosting their electrochemical properties.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 10\",\"pages\":\"6662–6669 6662–6669\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c00739\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00739","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电锌-空气电池(ZAB)的应用受到限制,主要是由于空气阴极的氧还原反应(ORR)动力学缓慢。因此,设计改善ORR动力学的催化剂是非常重要的。在此,我们合成了金属氧化物修饰的ZnS纳米颗粒(NPs),负载在氮掺杂的多孔碳上(记为MxOy-ZnS-N-C;M = Fe, Co)采用两步热解策略。通过XRD、TEM和XANES等系统表征证实了引入MxOy片段引起的ZnS NPs晶格收缩。feexoy - zns - nc /CoxOy-ZnS-NC催化剂与纯ZnS-N-C参考样品(0.75 V)相比,ORR活性明显提高,E1/2分别为0.895/0.86 V。重要的是,基于FexOy-ZnS-NC ORR催化剂的ZAB还提供了243 mW cm-2的高功率密度和超过400 h的长寿命。MxOy-ZnS- nc催化剂的这些优异性能归因于MxOy的引入导致ZnS NPs的晶格收缩,从而有效地优化了制备样品的电子结构,从而提高了ORR性能。本文提出了一种利用晶格应变调节催化剂电子结构以提高其电化学性能的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lattice Contraction of MxOy-Decorated ZnS Nanoparticles (M = Fe, Co) Boosting Oxygen Reduction for Zinc–Air Batteries

Lattice Contraction of MxOy-Decorated ZnS Nanoparticles (M = Fe, Co) Boosting Oxygen Reduction for Zinc–Air Batteries

The limited application of rechargeable zinc–air batteries (ZAB) is mainly attributed to the sluggish kinetics of the oxygen reduction reaction (ORR) in an air cathode. Therefore, designing catalysts to improve the ORR kinetics is significantly important. Herein, we synthesize metal oxide-decorated ZnS nanoparticles (NPs) supported on nitrogen-doped porous carbon (denoted as MxOy-ZnS-N-C; M = Fe, Co) by a two-step pyrolysis strategy. The lattice contraction of ZnS NPs induced by the introduction of the MxOy moiety is confirmed by systematic characterizations, including XRD, TEM, and XANES. The FexOy-ZnS-NC/CoxOy-ZnS-NC catalysts exhibit an apparently improved ORR activity with E1/2 of 0.895/0.86 V, respectively, compared to the pure ZnS-N-C reference sample (0.75 V). Importantly, the FexOy-ZnS-NC ORR catalyst-based ZAB also delivered a high power density of 243 mW cm–2 and a long durability over 400 h. These excellent properties of MxOy-ZnS-NC catalysts were attributed to the fact that introduction of MxOy leads to the lattice contraction of ZnS NPs, which efficiently optimizes the electronic structure of the as-prepared samples and therefore improves the ORR performance. This paper provides a useful strategy of using lattice strain to regulate the electronic structure of catalysts for boosting their electrochemical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信