2D Nb2Se2C对锂多硫化转化的催化潜力:DFT研究

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shrish Nath Upadhyay,  and , Jayant K. Singh*, 
{"title":"2D Nb2Se2C对锂多硫化转化的催化潜力:DFT研究","authors":"Shrish Nath Upadhyay,&nbsp; and ,&nbsp;Jayant K. Singh*,&nbsp;","doi":"10.1021/acsaem.5c0085710.1021/acsaem.5c00857","DOIUrl":null,"url":null,"abstract":"<p >The effective adsorption and conversion of sulfur species are essential to the performance of lithium–sulfur (Li–S) batteries. In this work, we designed a TMD-MXene-like material, Nb<sub>2</sub>Se<sub>2</sub>C, computationally by substituting the Nb layer of NbSe<sub>2</sub> with an Nb–C layer of Nb<sub>2</sub>C. We investigated its catalytic activity toward lithium polysulfide (LiPS) adsorption and conversion, and compared it with NbSe<sub>2</sub> and Nb<sub>2</sub>C using density functional theory (DFT) calculations. Adsorption energy analysis confirms that Nb<sub>2</sub>Se<sub>2</sub>C provides moderate and uniform binding across all LiPS species, ensuring stability and reversibility. In contrast, Nb<sub>2</sub>C binds too strongly, impeding LiPS mobility, while NbSe<sub>2</sub> shows weak adsorption for smaller polysulfides. Notably, Nb<sub>2</sub>Se<sub>2</sub>C maintains moderate adsorption across LiPS species (S<sub>8</sub>: −0.86 eV, Li<sub>2</sub>S<sub>6</sub>: −0.71 eV, Li<sub>2</sub>S: −1.51 eV), preventing polysulfide accumulation. The Bader charge analysis further confirms its superior charge transfer ability, with negligible sulfur loss (S<sub>8</sub>: −0.02|e| vs −1.33 |e|, for Nb<sub>2</sub>C). Gibbs free energy (Δ<i>G</i>) profiles indicate Nb<sub>2</sub>Se<sub>2</sub>C promotes a relatively facile sulfur reduction step, with favorable steps from S<sub>8</sub> to Li<sub>2</sub>S<sub>8</sub> (−2.55 eV) and minimal energy barriers, unlike Nb<sub>2</sub>C, which exhibits high resistance (S<sub>8</sub> → Li<sub>2</sub>S<sub>8</sub>: +1.24 eV). Additionally, AIMD simulations conducted at 500 K confirm that all three materials are thermally stable. Overall, Nb<sub>2</sub>Se<sub>2</sub>C proves to be an excellent cathode host, efficiently suppressing the polysulfide shuttle effect, improving sulfur utilization, and optimizing Li–S battery performance.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 10","pages":"6733–6745 6733–6745"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Catalytic Potential of 2D Nb2Se2C for Lithium Polysulfide Conversion: A DFT Study\",\"authors\":\"Shrish Nath Upadhyay,&nbsp; and ,&nbsp;Jayant K. Singh*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0085710.1021/acsaem.5c00857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The effective adsorption and conversion of sulfur species are essential to the performance of lithium–sulfur (Li–S) batteries. In this work, we designed a TMD-MXene-like material, Nb<sub>2</sub>Se<sub>2</sub>C, computationally by substituting the Nb layer of NbSe<sub>2</sub> with an Nb–C layer of Nb<sub>2</sub>C. We investigated its catalytic activity toward lithium polysulfide (LiPS) adsorption and conversion, and compared it with NbSe<sub>2</sub> and Nb<sub>2</sub>C using density functional theory (DFT) calculations. Adsorption energy analysis confirms that Nb<sub>2</sub>Se<sub>2</sub>C provides moderate and uniform binding across all LiPS species, ensuring stability and reversibility. In contrast, Nb<sub>2</sub>C binds too strongly, impeding LiPS mobility, while NbSe<sub>2</sub> shows weak adsorption for smaller polysulfides. Notably, Nb<sub>2</sub>Se<sub>2</sub>C maintains moderate adsorption across LiPS species (S<sub>8</sub>: −0.86 eV, Li<sub>2</sub>S<sub>6</sub>: −0.71 eV, Li<sub>2</sub>S: −1.51 eV), preventing polysulfide accumulation. The Bader charge analysis further confirms its superior charge transfer ability, with negligible sulfur loss (S<sub>8</sub>: −0.02|e| vs −1.33 |e|, for Nb<sub>2</sub>C). Gibbs free energy (Δ<i>G</i>) profiles indicate Nb<sub>2</sub>Se<sub>2</sub>C promotes a relatively facile sulfur reduction step, with favorable steps from S<sub>8</sub> to Li<sub>2</sub>S<sub>8</sub> (−2.55 eV) and minimal energy barriers, unlike Nb<sub>2</sub>C, which exhibits high resistance (S<sub>8</sub> → Li<sub>2</sub>S<sub>8</sub>: +1.24 eV). Additionally, AIMD simulations conducted at 500 K confirm that all three materials are thermally stable. Overall, Nb<sub>2</sub>Se<sub>2</sub>C proves to be an excellent cathode host, efficiently suppressing the polysulfide shuttle effect, improving sulfur utilization, and optimizing Li–S battery performance.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 10\",\"pages\":\"6733–6745 6733–6745\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c00857\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00857","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫的有效吸附和转化对锂硫电池的性能至关重要。在这项工作中,我们设计了一种类似tmd - mxene的材料Nb2Se2C,通过计算用Nb2C的Nb - c层代替NbSe2的Nb层。研究了其对多硫化锂(lip)吸附和转化的催化活性,并利用密度泛函理论(DFT)将其与NbSe2和Nb2C进行了比较。吸附能分析证实,Nb2Se2C在所有LiPS中具有中等和均匀的结合,确保了稳定性和可逆性。相比之下,Nb2C结合太强,阻碍了lip的迁移,而NbSe2对较小的多硫化物的吸附较弱。值得注意的是,Nb2Se2C在lip之间保持适度的吸附(S8:−0.86 eV, Li2S6:−0.71 eV, Li2S:−1.51 eV),防止了多硫化物的积累。Bader电荷分析进一步证实了其优越的电荷转移能力,硫损失可以忽略不计(S8: - 0.02|e| vs - 1.33 |e|, Nb2C)。Gibbs自由能(ΔG)谱图表明,Nb2Se2C促进了一个相对容易的硫还原步骤,从S8到Li2S8(−2.55 eV)的有利步骤和最小的能量势垒,而Nb2C表现出高阻力(S8→Li2S8: +1.24 eV)。此外,在500k下进行的AIMD模拟证实了这三种材料都是热稳定的。总体而言,Nb2Se2C被证明是一种优秀的阴极主体,可以有效地抑制多硫化物穿梭效应,提高硫的利用率,优化Li-S电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the Catalytic Potential of 2D Nb2Se2C for Lithium Polysulfide Conversion: A DFT Study

Unraveling the Catalytic Potential of 2D Nb2Se2C for Lithium Polysulfide Conversion: A DFT Study

The effective adsorption and conversion of sulfur species are essential to the performance of lithium–sulfur (Li–S) batteries. In this work, we designed a TMD-MXene-like material, Nb2Se2C, computationally by substituting the Nb layer of NbSe2 with an Nb–C layer of Nb2C. We investigated its catalytic activity toward lithium polysulfide (LiPS) adsorption and conversion, and compared it with NbSe2 and Nb2C using density functional theory (DFT) calculations. Adsorption energy analysis confirms that Nb2Se2C provides moderate and uniform binding across all LiPS species, ensuring stability and reversibility. In contrast, Nb2C binds too strongly, impeding LiPS mobility, while NbSe2 shows weak adsorption for smaller polysulfides. Notably, Nb2Se2C maintains moderate adsorption across LiPS species (S8: −0.86 eV, Li2S6: −0.71 eV, Li2S: −1.51 eV), preventing polysulfide accumulation. The Bader charge analysis further confirms its superior charge transfer ability, with negligible sulfur loss (S8: −0.02|e| vs −1.33 |e|, for Nb2C). Gibbs free energy (ΔG) profiles indicate Nb2Se2C promotes a relatively facile sulfur reduction step, with favorable steps from S8 to Li2S8 (−2.55 eV) and minimal energy barriers, unlike Nb2C, which exhibits high resistance (S8 → Li2S8: +1.24 eV). Additionally, AIMD simulations conducted at 500 K confirm that all three materials are thermally stable. Overall, Nb2Se2C proves to be an excellent cathode host, efficiently suppressing the polysulfide shuttle effect, improving sulfur utilization, and optimizing Li–S battery performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信