使用图形生成模型导航香水空间和预测气味

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Mrityunjay Sharma, Sarabeshwar Balaji, Pinaki Saha and Ritesh Kumar*, 
{"title":"使用图形生成模型导航香水空间和预测气味","authors":"Mrityunjay Sharma,&nbsp;Sarabeshwar Balaji,&nbsp;Pinaki Saha and Ritesh Kumar*,&nbsp;","doi":"10.1021/acs.jcim.5c0020910.1021/acs.jcim.5c00209","DOIUrl":null,"url":null,"abstract":"<p >We explore a suite of generative modeling techniques to efficiently navigate and explore the complex landscapes of odor and the broader chemical space. Unlike traditional approaches, we not only generate molecules but also predict the odor likeliness with a ROC AUC score of 0.97 and assign probable odor labels. We correlate odor likeliness with physicochemical features of molecules using machine learning techniques and leverage SHAP (SHapley Additive exPlanations) to demonstrate the interpretability of the function. The whole process involves four key stages: molecule generation, stringent sanitization checks for molecular validity, fragrance likeliness screening, and odor prediction of the generated molecules. By making our code and trained models publicly accessible, we aim to facilitate the broader adoption of our research across applications in fragrance discovery and olfactory research.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 10","pages":"4818–4832 4818–4832"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the Fragrance Space Using Graph Generative Models and Predicting Odors\",\"authors\":\"Mrityunjay Sharma,&nbsp;Sarabeshwar Balaji,&nbsp;Pinaki Saha and Ritesh Kumar*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.5c0020910.1021/acs.jcim.5c00209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We explore a suite of generative modeling techniques to efficiently navigate and explore the complex landscapes of odor and the broader chemical space. Unlike traditional approaches, we not only generate molecules but also predict the odor likeliness with a ROC AUC score of 0.97 and assign probable odor labels. We correlate odor likeliness with physicochemical features of molecules using machine learning techniques and leverage SHAP (SHapley Additive exPlanations) to demonstrate the interpretability of the function. The whole process involves four key stages: molecule generation, stringent sanitization checks for molecular validity, fragrance likeliness screening, and odor prediction of the generated molecules. By making our code and trained models publicly accessible, we aim to facilitate the broader adoption of our research across applications in fragrance discovery and olfactory research.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 10\",\"pages\":\"4818–4832 4818–4832\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00209\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00209","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了一套生成建模技术,以有效地导航和探索气味的复杂景观和更广泛的化学空间。与传统方法不同,我们不仅生成分子,而且还预测了ROC AUC得分为0.97的气味可能性,并分配了可能的气味标签。我们使用机器学习技术将气味的可能性与分子的物理化学特征联系起来,并利用SHapley (SHapley Additive explanation)来证明该函数的可解释性。整个过程包括四个关键阶段:分子生成、严格的分子有效性卫生检查、香味可能性筛选和生成分子的气味预测。通过公开我们的代码和训练模型,我们的目标是促进我们的研究在香味发现和嗅觉研究中的应用得到更广泛的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Navigating the Fragrance Space Using Graph Generative Models and Predicting Odors

Navigating the Fragrance Space Using Graph Generative Models and Predicting Odors

We explore a suite of generative modeling techniques to efficiently navigate and explore the complex landscapes of odor and the broader chemical space. Unlike traditional approaches, we not only generate molecules but also predict the odor likeliness with a ROC AUC score of 0.97 and assign probable odor labels. We correlate odor likeliness with physicochemical features of molecules using machine learning techniques and leverage SHAP (SHapley Additive exPlanations) to demonstrate the interpretability of the function. The whole process involves four key stages: molecule generation, stringent sanitization checks for molecular validity, fragrance likeliness screening, and odor prediction of the generated molecules. By making our code and trained models publicly accessible, we aim to facilitate the broader adoption of our research across applications in fragrance discovery and olfactory research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信