{"title":"用于研究肌动蛋白网络结构和动态的重构系统。","authors":"Alice Cantat,Alexandra Colin","doi":"10.1042/bcj20253044","DOIUrl":null,"url":null,"abstract":"Actin, a ubiquitous protein essential for numerous cellular functions, is found in all eukaryotes. Despite extensive research across molecular to organismal scales, fundamental questions persist regarding the regulation of dynamic actin architectures, their interaction with membranes, and their mechanical properties. Characterizing the factors governing these processes presents significant challenges. This review emphasizes the value of simplified, reconstituted systems in addressing these unresolved questions. We particularly highlight the critical importance of macroscopic, network-level reconstitutions for tackling these issues. We first describe the available methodological toolkit for (1) controlling actin polymerization spatiotemporally and (2) confining actin networks within closed environments to examine boundary constraint effects or the impact of limited component availability on network properties. We then review studies employing these reconstituted systems to investigate how actin architecture influences various processes and how dynamic actin structures are established and maintained. Further, we discuss how network-level reconstitutions have enhanced our understanding of actin networks' mechanical properties and their interaction with the lipid membranes. Throughout the review, we discuss future perspectives for each topic and explain how macroscale reconstitutions can provide deeper mechanistic insights into actin-related processes.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"23 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstituted systems for studying the architecture and dynamics of actin networks.\",\"authors\":\"Alice Cantat,Alexandra Colin\",\"doi\":\"10.1042/bcj20253044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Actin, a ubiquitous protein essential for numerous cellular functions, is found in all eukaryotes. Despite extensive research across molecular to organismal scales, fundamental questions persist regarding the regulation of dynamic actin architectures, their interaction with membranes, and their mechanical properties. Characterizing the factors governing these processes presents significant challenges. This review emphasizes the value of simplified, reconstituted systems in addressing these unresolved questions. We particularly highlight the critical importance of macroscopic, network-level reconstitutions for tackling these issues. We first describe the available methodological toolkit for (1) controlling actin polymerization spatiotemporally and (2) confining actin networks within closed environments to examine boundary constraint effects or the impact of limited component availability on network properties. We then review studies employing these reconstituted systems to investigate how actin architecture influences various processes and how dynamic actin structures are established and maintained. Further, we discuss how network-level reconstitutions have enhanced our understanding of actin networks' mechanical properties and their interaction with the lipid membranes. Throughout the review, we discuss future perspectives for each topic and explain how macroscale reconstitutions can provide deeper mechanistic insights into actin-related processes.\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/bcj20253044\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bcj20253044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reconstituted systems for studying the architecture and dynamics of actin networks.
Actin, a ubiquitous protein essential for numerous cellular functions, is found in all eukaryotes. Despite extensive research across molecular to organismal scales, fundamental questions persist regarding the regulation of dynamic actin architectures, their interaction with membranes, and their mechanical properties. Characterizing the factors governing these processes presents significant challenges. This review emphasizes the value of simplified, reconstituted systems in addressing these unresolved questions. We particularly highlight the critical importance of macroscopic, network-level reconstitutions for tackling these issues. We first describe the available methodological toolkit for (1) controlling actin polymerization spatiotemporally and (2) confining actin networks within closed environments to examine boundary constraint effects or the impact of limited component availability on network properties. We then review studies employing these reconstituted systems to investigate how actin architecture influences various processes and how dynamic actin structures are established and maintained. Further, we discuss how network-level reconstitutions have enhanced our understanding of actin networks' mechanical properties and their interaction with the lipid membranes. Throughout the review, we discuss future perspectives for each topic and explain how macroscale reconstitutions can provide deeper mechanistic insights into actin-related processes.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling