用肌肉协同激活的肌肉骨骼模型估计等效外力。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Pau Zamora-Ortiz, Rafael J Escarabajal, José L Pulloquinga, Ángel Valera, Marina Valles
{"title":"用肌肉协同激活的肌肉骨骼模型估计等效外力。","authors":"Pau Zamora-Ortiz, Rafael J Escarabajal, José L Pulloquinga, Ángel Valera, Marina Valles","doi":"10.1007/s11517-025-03376-0","DOIUrl":null,"url":null,"abstract":"<p><p>The present work introduces a novel method to determine the force vector that a subject must exert at the end of a limb in order to achieve the desired muscle force, taking into account muscle coactivation. The obtained force vector is referred to as the equivalent external force, as it represents the exerted force at the end-effector needed to provoke a desired muscle force. By using a musculoskeletal model of the lower limb and applying the Karush-Kuhn-Tucker conditions, a precise solution has been achieved to calculate the equivalent external force at the foot for the desired muscle force. The method has been tested with a four-degree-of-freedom robot, generating optimal activation trajectories for the vasti and confirming that the desired force level is achieved. The results validate the effectiveness of the proposed method and highlight its potential applications in both medical rehabilitation and sports training. This significant advancement in the field of biomechanics would provide a valuable tool for health and sports professionals, improving training and rehabilitation strategies.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3053-3065"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the equivalent external force using a musculoskeletal model with muscle coactivation.\",\"authors\":\"Pau Zamora-Ortiz, Rafael J Escarabajal, José L Pulloquinga, Ángel Valera, Marina Valles\",\"doi\":\"10.1007/s11517-025-03376-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present work introduces a novel method to determine the force vector that a subject must exert at the end of a limb in order to achieve the desired muscle force, taking into account muscle coactivation. The obtained force vector is referred to as the equivalent external force, as it represents the exerted force at the end-effector needed to provoke a desired muscle force. By using a musculoskeletal model of the lower limb and applying the Karush-Kuhn-Tucker conditions, a precise solution has been achieved to calculate the equivalent external force at the foot for the desired muscle force. The method has been tested with a four-degree-of-freedom robot, generating optimal activation trajectories for the vasti and confirming that the desired force level is achieved. The results validate the effectiveness of the proposed method and highlight its potential applications in both medical rehabilitation and sports training. This significant advancement in the field of biomechanics would provide a valuable tool for health and sports professionals, improving training and rehabilitation strategies.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"3053-3065\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03376-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03376-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目前的工作介绍了一种新的方法来确定一个对象必须在肢体末端施加的力向量,以实现所需的肌肉力,同时考虑到肌肉的协同激活。获得的力矢量被称为等效外力,因为它代表了在末端执行器上施加的力,需要引起所需的肌肉力。通过使用下肢肌肉骨骼模型并应用Karush-Kuhn-Tucker条件,获得了计算所需肌肉力的足部等效外力的精确解。该方法已经在一个四自由度的机器人上进行了测试,为vasti生成了最佳的激活轨迹,并确认达到了所需的力水平。结果验证了该方法的有效性,并突出了其在医学康复和运动训练中的潜在应用。生物力学领域的这一重大进展将为卫生和体育专业人员提供宝贵的工具,改进训练和康复战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the equivalent external force using a musculoskeletal model with muscle coactivation.

The present work introduces a novel method to determine the force vector that a subject must exert at the end of a limb in order to achieve the desired muscle force, taking into account muscle coactivation. The obtained force vector is referred to as the equivalent external force, as it represents the exerted force at the end-effector needed to provoke a desired muscle force. By using a musculoskeletal model of the lower limb and applying the Karush-Kuhn-Tucker conditions, a precise solution has been achieved to calculate the equivalent external force at the foot for the desired muscle force. The method has been tested with a four-degree-of-freedom robot, generating optimal activation trajectories for the vasti and confirming that the desired force level is achieved. The results validate the effectiveness of the proposed method and highlight its potential applications in both medical rehabilitation and sports training. This significant advancement in the field of biomechanics would provide a valuable tool for health and sports professionals, improving training and rehabilitation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信