使用基于生物学的数字双胞胎个性化三阴性乳腺癌新辅助化疗方案。

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Chase Christenson, Chengyue Wu, David A Hormuth, Jingfei Ma, Clinton Yam, Gaiane M Rauch, Thomas E Yankeelov
{"title":"使用基于生物学的数字双胞胎个性化三阴性乳腺癌新辅助化疗方案。","authors":"Chase Christenson, Chengyue Wu, David A Hormuth, Jingfei Ma, Clinton Yam, Gaiane M Rauch, Thomas E Yankeelov","doi":"10.1038/s41540-025-00531-z","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances triple negative breast cancer treatment, ~50% of patients will not achieve a pathological complete response prior to surgery with standard of care neoadjuvant therapy (NAT). We hypothesize that personalized regimens for NAT could significantly improve patient outcomes, which we address with a patient-specific digital twin framework. This framework is established by calibrating a biology-based model to longitudinal magnetic resonance images with approximate Bayesian computation. We then apply optimal control theory to either (1) reduce the final tumor cell number with equivalent dose, or (2) reduce the total dose of NAT with equivalent response. For (1), the personalized regimens (n = 50) achieved a median (range) reduction in the final tumor cell number of 17.62% (0.00-37.36%). For (2), the personalized regimens achieved a median reduction in dose delivered of 12.62% (0.00-56.55%) when compared to the standard-of-care regimen, while providing statistically equivalent tumor control.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"53"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102339/pdf/","citationCount":"0","resultStr":"{\"title\":\"Personalizing neoadjuvant chemotherapy regimens for triple-negative breast cancer using a biology-based digital twin.\",\"authors\":\"Chase Christenson, Chengyue Wu, David A Hormuth, Jingfei Ma, Clinton Yam, Gaiane M Rauch, Thomas E Yankeelov\",\"doi\":\"10.1038/s41540-025-00531-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite advances triple negative breast cancer treatment, ~50% of patients will not achieve a pathological complete response prior to surgery with standard of care neoadjuvant therapy (NAT). We hypothesize that personalized regimens for NAT could significantly improve patient outcomes, which we address with a patient-specific digital twin framework. This framework is established by calibrating a biology-based model to longitudinal magnetic resonance images with approximate Bayesian computation. We then apply optimal control theory to either (1) reduce the final tumor cell number with equivalent dose, or (2) reduce the total dose of NAT with equivalent response. For (1), the personalized regimens (n = 50) achieved a median (range) reduction in the final tumor cell number of 17.62% (0.00-37.36%). For (2), the personalized regimens achieved a median reduction in dose delivered of 12.62% (0.00-56.55%) when compared to the standard-of-care regimen, while providing statistically equivalent tumor control.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"53\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00531-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00531-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管三阴性乳腺癌治疗取得了进展,但约50%的患者在手术前采用标准护理新辅助治疗(NAT)无法达到病理完全缓解。我们假设NAT的个性化方案可以显著改善患者的预后,我们用患者特定的数字双胞胎框架来解决这个问题。该框架是通过近似贝叶斯计算校准基于生物的纵向磁共振图像模型而建立的。然后,我们应用最优控制理论(1)以等效剂量减少最终肿瘤细胞数,或(2)以等效反应减少NAT总剂量。对于(1),个体化方案(n = 50)使最终肿瘤细胞数量中位数(范围)减少了17.62%(0.00-37.36%)。对于(2),与标准治疗方案相比,个性化方案的中位剂量减少了12.62%(0.00-56.55%),同时提供了统计上等效的肿瘤控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalizing neoadjuvant chemotherapy regimens for triple-negative breast cancer using a biology-based digital twin.

Despite advances triple negative breast cancer treatment, ~50% of patients will not achieve a pathological complete response prior to surgery with standard of care neoadjuvant therapy (NAT). We hypothesize that personalized regimens for NAT could significantly improve patient outcomes, which we address with a patient-specific digital twin framework. This framework is established by calibrating a biology-based model to longitudinal magnetic resonance images with approximate Bayesian computation. We then apply optimal control theory to either (1) reduce the final tumor cell number with equivalent dose, or (2) reduce the total dose of NAT with equivalent response. For (1), the personalized regimens (n = 50) achieved a median (range) reduction in the final tumor cell number of 17.62% (0.00-37.36%). For (2), the personalized regimens achieved a median reduction in dose delivered of 12.62% (0.00-56.55%) when compared to the standard-of-care regimen, while providing statistically equivalent tumor control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信