{"title":"用随机微分方程模型估计合成肿瘤和体外肿瘤的治疗敏感性。","authors":"Natalie Meacham, Erica M Rutter","doi":"10.1038/s41540-025-00530-0","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to treatment, which comes from the heterogeneity of cell types within tumors, is a leading cause of poor treatment outcomes in cancer patients. Previous mathematical work modeling cancer over time has neither emphasized the relationship between cell heterogeneity and treatment resistance nor depicted heterogeneity with sufficient nuance. To respond to the need to depict a wide range of resistance levels, we develop a random differential equation model of tumor growth. Random differential equations are differential equations in which the parameters are random variables. In the inverse problem, we aim to recover the sensitivity to treatment as a probability mass function. This allows us to observe what proportions of cells exist at different sensitivity levels. After validating the method with synthetic data, we apply it to monoclonal and mixture cell population data of isogenic Ba/F3 murine cell lines to uncover each tumor's levels of sensitivity to treatment as a probability mass function.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"54"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating treatment sensitivity in synthetic and in vitro tumors using a random differential equation model.\",\"authors\":\"Natalie Meacham, Erica M Rutter\",\"doi\":\"10.1038/s41540-025-00530-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resistance to treatment, which comes from the heterogeneity of cell types within tumors, is a leading cause of poor treatment outcomes in cancer patients. Previous mathematical work modeling cancer over time has neither emphasized the relationship between cell heterogeneity and treatment resistance nor depicted heterogeneity with sufficient nuance. To respond to the need to depict a wide range of resistance levels, we develop a random differential equation model of tumor growth. Random differential equations are differential equations in which the parameters are random variables. In the inverse problem, we aim to recover the sensitivity to treatment as a probability mass function. This allows us to observe what proportions of cells exist at different sensitivity levels. After validating the method with synthetic data, we apply it to monoclonal and mixture cell population data of isogenic Ba/F3 murine cell lines to uncover each tumor's levels of sensitivity to treatment as a probability mass function.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"54\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00530-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00530-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Estimating treatment sensitivity in synthetic and in vitro tumors using a random differential equation model.
Resistance to treatment, which comes from the heterogeneity of cell types within tumors, is a leading cause of poor treatment outcomes in cancer patients. Previous mathematical work modeling cancer over time has neither emphasized the relationship between cell heterogeneity and treatment resistance nor depicted heterogeneity with sufficient nuance. To respond to the need to depict a wide range of resistance levels, we develop a random differential equation model of tumor growth. Random differential equations are differential equations in which the parameters are random variables. In the inverse problem, we aim to recover the sensitivity to treatment as a probability mass function. This allows us to observe what proportions of cells exist at different sensitivity levels. After validating the method with synthetic data, we apply it to monoclonal and mixture cell population data of isogenic Ba/F3 murine cell lines to uncover each tumor's levels of sensitivity to treatment as a probability mass function.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.