{"title":"雄激素受体在调控宫颈癌细胞迁移中起关键作用。","authors":"Sarpita Bose , Subhrangshu Das , Sebabrata Maity , Deblina Raychaudhuri , Tania Banerjee , Madhurima Paul , Asima Mukhopadhyay , Oishee Chakrabarti , Saikat Chakrabarti","doi":"10.1016/j.mce.2025.112583","DOIUrl":null,"url":null,"abstract":"<div><div>Cervical cancer (CC) is the second most common cancer among women in India and the fourth worldwide. While major genes and pathways have been studied, further research is needed to identify newer candidates for targeted therapy in metastatic disease. This study used a graph-theory-based network analysis to identify important interacting proteins (IIPs) with maximum connectivity, high centrality scores, and significant global and local network perturbation scores. Among the identified IIPs, the Androgen receptor (AR) emerged as one of the crucial yet understudied regulator in cervical cancer. Patient samples, ex vivo, and in vitro experiments showed significant downregulation of AR in cervical cancer. Ligand-dependent overexpression of AR reduced cancer cell migration while failed to induce apoptosis in CC cell lines. Downregulation of mesenchymal markers and restoration of epithelial markers upon exogenous expression of AR suggested its potential in reversing invasive properties of cervical cancer cells. AR overexpression followed by activation upregulated its downstream target PTEN and downregulated pPI3K levels, which in turn restored GSK3β activity by interfering with AKT phosphorylation, probably leading to degradation of mesenchymal markers in cervical cancer cells. Further studies showed that AR reduced cell motility by hindering focal adhesion formation and Actin filament assembly. An increased G-Actin ratio suggested AR disrupted cytoskeletal dynamics through altering the RhoA/ROCK1/LIMK1/CFL1 pathway eventually impeding cervical cancer cell spread.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"606 ","pages":"Article 112583"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Androgen receptor plays critical role in regulating cervical cancer cell migration\",\"authors\":\"Sarpita Bose , Subhrangshu Das , Sebabrata Maity , Deblina Raychaudhuri , Tania Banerjee , Madhurima Paul , Asima Mukhopadhyay , Oishee Chakrabarti , Saikat Chakrabarti\",\"doi\":\"10.1016/j.mce.2025.112583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cervical cancer (CC) is the second most common cancer among women in India and the fourth worldwide. While major genes and pathways have been studied, further research is needed to identify newer candidates for targeted therapy in metastatic disease. This study used a graph-theory-based network analysis to identify important interacting proteins (IIPs) with maximum connectivity, high centrality scores, and significant global and local network perturbation scores. Among the identified IIPs, the Androgen receptor (AR) emerged as one of the crucial yet understudied regulator in cervical cancer. Patient samples, ex vivo, and in vitro experiments showed significant downregulation of AR in cervical cancer. Ligand-dependent overexpression of AR reduced cancer cell migration while failed to induce apoptosis in CC cell lines. Downregulation of mesenchymal markers and restoration of epithelial markers upon exogenous expression of AR suggested its potential in reversing invasive properties of cervical cancer cells. AR overexpression followed by activation upregulated its downstream target PTEN and downregulated pPI3K levels, which in turn restored GSK3β activity by interfering with AKT phosphorylation, probably leading to degradation of mesenchymal markers in cervical cancer cells. Further studies showed that AR reduced cell motility by hindering focal adhesion formation and Actin filament assembly. An increased G-Actin ratio suggested AR disrupted cytoskeletal dynamics through altering the RhoA/ROCK1/LIMK1/CFL1 pathway eventually impeding cervical cancer cell spread.</div></div>\",\"PeriodicalId\":18707,\"journal\":{\"name\":\"Molecular and Cellular Endocrinology\",\"volume\":\"606 \",\"pages\":\"Article 112583\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303720725001340\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720725001340","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Androgen receptor plays critical role in regulating cervical cancer cell migration
Cervical cancer (CC) is the second most common cancer among women in India and the fourth worldwide. While major genes and pathways have been studied, further research is needed to identify newer candidates for targeted therapy in metastatic disease. This study used a graph-theory-based network analysis to identify important interacting proteins (IIPs) with maximum connectivity, high centrality scores, and significant global and local network perturbation scores. Among the identified IIPs, the Androgen receptor (AR) emerged as one of the crucial yet understudied regulator in cervical cancer. Patient samples, ex vivo, and in vitro experiments showed significant downregulation of AR in cervical cancer. Ligand-dependent overexpression of AR reduced cancer cell migration while failed to induce apoptosis in CC cell lines. Downregulation of mesenchymal markers and restoration of epithelial markers upon exogenous expression of AR suggested its potential in reversing invasive properties of cervical cancer cells. AR overexpression followed by activation upregulated its downstream target PTEN and downregulated pPI3K levels, which in turn restored GSK3β activity by interfering with AKT phosphorylation, probably leading to degradation of mesenchymal markers in cervical cancer cells. Further studies showed that AR reduced cell motility by hindering focal adhesion formation and Actin filament assembly. An increased G-Actin ratio suggested AR disrupted cytoskeletal dynamics through altering the RhoA/ROCK1/LIMK1/CFL1 pathway eventually impeding cervical cancer cell spread.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.