Zhuangzhi Xiong , Xiaoqin Zhou , Yufeng Li , Liu Yang
{"title":"PACAP通过抑制Sp1/AQP1通路抑制脓毒症相关急性肺损伤。","authors":"Zhuangzhi Xiong , Xiaoqin Zhou , Yufeng Li , Liu Yang","doi":"10.1016/j.peptides.2025.171411","DOIUrl":null,"url":null,"abstract":"<div><div>Sepsis-induced acute lung injury (ALI) represents a severe pathological state marked by uncontrolled inflammation, redox imbalance, and alveolar-capillary barrier breakdown. Here, we evaluated the therapeutic potential of pituitary adenylate cyclase-activating polypeptide (PACAP) in a murine sepsis-ALI model. PACAP treatment notably ameliorated histological damage, reduced oxidative stress biomarkers, and mitigated inflammatory processes, including neutrophil accumulation and pro-inflammatory cytokine release. Molecular analysis revealed PACAP-mediated downregulation of Aquaporin-1 (AQP1) and specificity protein 1 (Sp1), key regulators of alveolar fluid homeostasis and inflammatory signaling. Genetic Sp1 overexpression abrogated PACAP-induced AQP1 suppression, validating the Sp1/AQP1 signaling pathway as a critical mediator of PACAP’s protective effects. Additionally, in vitro MTT assays on RAW 264.7 macrophages demonstrated that PACAP has low toxicity at biologically relevant levels. These findings demonstrate PACAP’s therapeutic promise for sepsis-ALI through modulation of the Sp1/AQP1 axis.</div></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"191 ","pages":"Article 171411"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PACAP inhibits sepsis-associated acute lung injury by inhibiting the Sp1/AQP1 pathway\",\"authors\":\"Zhuangzhi Xiong , Xiaoqin Zhou , Yufeng Li , Liu Yang\",\"doi\":\"10.1016/j.peptides.2025.171411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sepsis-induced acute lung injury (ALI) represents a severe pathological state marked by uncontrolled inflammation, redox imbalance, and alveolar-capillary barrier breakdown. Here, we evaluated the therapeutic potential of pituitary adenylate cyclase-activating polypeptide (PACAP) in a murine sepsis-ALI model. PACAP treatment notably ameliorated histological damage, reduced oxidative stress biomarkers, and mitigated inflammatory processes, including neutrophil accumulation and pro-inflammatory cytokine release. Molecular analysis revealed PACAP-mediated downregulation of Aquaporin-1 (AQP1) and specificity protein 1 (Sp1), key regulators of alveolar fluid homeostasis and inflammatory signaling. Genetic Sp1 overexpression abrogated PACAP-induced AQP1 suppression, validating the Sp1/AQP1 signaling pathway as a critical mediator of PACAP’s protective effects. Additionally, in vitro MTT assays on RAW 264.7 macrophages demonstrated that PACAP has low toxicity at biologically relevant levels. These findings demonstrate PACAP’s therapeutic promise for sepsis-ALI through modulation of the Sp1/AQP1 axis.</div></div>\",\"PeriodicalId\":19765,\"journal\":{\"name\":\"Peptides\",\"volume\":\"191 \",\"pages\":\"Article 171411\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196978125000725\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978125000725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PACAP inhibits sepsis-associated acute lung injury by inhibiting the Sp1/AQP1 pathway
Sepsis-induced acute lung injury (ALI) represents a severe pathological state marked by uncontrolled inflammation, redox imbalance, and alveolar-capillary barrier breakdown. Here, we evaluated the therapeutic potential of pituitary adenylate cyclase-activating polypeptide (PACAP) in a murine sepsis-ALI model. PACAP treatment notably ameliorated histological damage, reduced oxidative stress biomarkers, and mitigated inflammatory processes, including neutrophil accumulation and pro-inflammatory cytokine release. Molecular analysis revealed PACAP-mediated downregulation of Aquaporin-1 (AQP1) and specificity protein 1 (Sp1), key regulators of alveolar fluid homeostasis and inflammatory signaling. Genetic Sp1 overexpression abrogated PACAP-induced AQP1 suppression, validating the Sp1/AQP1 signaling pathway as a critical mediator of PACAP’s protective effects. Additionally, in vitro MTT assays on RAW 264.7 macrophages demonstrated that PACAP has low toxicity at biologically relevant levels. These findings demonstrate PACAP’s therapeutic promise for sepsis-ALI through modulation of the Sp1/AQP1 axis.
期刊介绍:
Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects.
Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.