Reza Fadaei, Annie C Bernstein, Andrew N Jenkins, Allison G Pickens, Jonah E Zarrow, Abdul-Musawwir Alli-Oluwafuyi, Keri A Tallman, Sean S Davies
{"title":"脂质过氧化生成的n -醛修饰磷脂酰乙醇胺是n -酰基磷脂酰乙醇胺磷脂酶D的强大底物。","authors":"Reza Fadaei, Annie C Bernstein, Andrew N Jenkins, Allison G Pickens, Jonah E Zarrow, Abdul-Musawwir Alli-Oluwafuyi, Keri A Tallman, Sean S Davies","doi":"10.1016/j.jlr.2025.100831","DOIUrl":null,"url":null,"abstract":"<p><p>N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyzes phosphatidylethanolamines (PEs) where the headgroup nitrogen has been enzymatically modified with acyl chains of four carbons or longer (N-acyl-PEs or NAPEs). The nitrogen headgroup of PE can also be nonenzymatically modified by reactive lipid aldehydes, thus forming N-aldehyde-modified PEs (NALPEs). Some NALPEs such as N-carboxyacyl-PEs are linked to PE via amide bonds similar to NAPEs, but others are linked by imine, pyrrole, or lactam moieties. Whether NAPE-PLD can hydrolyze NALPEs was unknown. We therefore characterized the major NALPE species formed during lipid peroxidation of arachidonic acid and linoleic acid and generated various NALPEs for characterization of their sensitivity to NAPE-PLD hydrolysis by reacting synthesized aldehydes with PE. We found that NAPE-PLD could act on NALPEs of various lengths and linkage types including those derived from PE modified by N-malondialdehyde, N-4-hydroxynonenal, N-4-oxo-nonenal, N-9-keto-12-oxo-dodecenoic acid, and N-15-E<sub>2</sub>-isolevuglandin. To assess the relative preference of NAPE-PLD for various NALPEs versus its canonical NAPE substrates, we generated a substrate mixture containing roughly equimolar concentrations of seven NALPEs as well as two NAPEs (N-palmitoyl-PE and N-linoleoyl-PE) and measured their rate of hydrolysis. Several NALPE species, including the N-4-hydroxynonenal-PE pyrrole species, were hydrolyzed at a similar rate as N-linoleoyl-PE, and many of the other NALPEs showed intermediate rates of hydrolysis. These results significantly expand the substrate repertoire of NAPE-PLD and suggest that it may play an important role in clearing products of lipid peroxidation in addition to its established role in the biosynthesis of N-acyl-ethanolamines.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100831"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214272/pdf/","citationCount":"0","resultStr":"{\"title\":\"N-aldehyde-modified phosphatidylethanolamines generated by lipid peroxidation are robust substrates of N-acyl phosphatidylethanolamine phospholipase D.\",\"authors\":\"Reza Fadaei, Annie C Bernstein, Andrew N Jenkins, Allison G Pickens, Jonah E Zarrow, Abdul-Musawwir Alli-Oluwafuyi, Keri A Tallman, Sean S Davies\",\"doi\":\"10.1016/j.jlr.2025.100831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyzes phosphatidylethanolamines (PEs) where the headgroup nitrogen has been enzymatically modified with acyl chains of four carbons or longer (N-acyl-PEs or NAPEs). The nitrogen headgroup of PE can also be nonenzymatically modified by reactive lipid aldehydes, thus forming N-aldehyde-modified PEs (NALPEs). Some NALPEs such as N-carboxyacyl-PEs are linked to PE via amide bonds similar to NAPEs, but others are linked by imine, pyrrole, or lactam moieties. Whether NAPE-PLD can hydrolyze NALPEs was unknown. We therefore characterized the major NALPE species formed during lipid peroxidation of arachidonic acid and linoleic acid and generated various NALPEs for characterization of their sensitivity to NAPE-PLD hydrolysis by reacting synthesized aldehydes with PE. We found that NAPE-PLD could act on NALPEs of various lengths and linkage types including those derived from PE modified by N-malondialdehyde, N-4-hydroxynonenal, N-4-oxo-nonenal, N-9-keto-12-oxo-dodecenoic acid, and N-15-E<sub>2</sub>-isolevuglandin. To assess the relative preference of NAPE-PLD for various NALPEs versus its canonical NAPE substrates, we generated a substrate mixture containing roughly equimolar concentrations of seven NALPEs as well as two NAPEs (N-palmitoyl-PE and N-linoleoyl-PE) and measured their rate of hydrolysis. Several NALPE species, including the N-4-hydroxynonenal-PE pyrrole species, were hydrolyzed at a similar rate as N-linoleoyl-PE, and many of the other NALPEs showed intermediate rates of hydrolysis. These results significantly expand the substrate repertoire of NAPE-PLD and suggest that it may play an important role in clearing products of lipid peroxidation in addition to its established role in the biosynthesis of N-acyl-ethanolamines.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100831\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214272/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2025.100831\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100831","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
N-aldehyde-modified phosphatidylethanolamines generated by lipid peroxidation are robust substrates of N-acyl phosphatidylethanolamine phospholipase D.
N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyzes phosphatidylethanolamines (PEs) where the headgroup nitrogen has been enzymatically modified with acyl chains of four carbons or longer (N-acyl-PEs or NAPEs). The nitrogen headgroup of PE can also be nonenzymatically modified by reactive lipid aldehydes, thus forming N-aldehyde-modified PEs (NALPEs). Some NALPEs such as N-carboxyacyl-PEs are linked to PE via amide bonds similar to NAPEs, but others are linked by imine, pyrrole, or lactam moieties. Whether NAPE-PLD can hydrolyze NALPEs was unknown. We therefore characterized the major NALPE species formed during lipid peroxidation of arachidonic acid and linoleic acid and generated various NALPEs for characterization of their sensitivity to NAPE-PLD hydrolysis by reacting synthesized aldehydes with PE. We found that NAPE-PLD could act on NALPEs of various lengths and linkage types including those derived from PE modified by N-malondialdehyde, N-4-hydroxynonenal, N-4-oxo-nonenal, N-9-keto-12-oxo-dodecenoic acid, and N-15-E2-isolevuglandin. To assess the relative preference of NAPE-PLD for various NALPEs versus its canonical NAPE substrates, we generated a substrate mixture containing roughly equimolar concentrations of seven NALPEs as well as two NAPEs (N-palmitoyl-PE and N-linoleoyl-PE) and measured their rate of hydrolysis. Several NALPE species, including the N-4-hydroxynonenal-PE pyrrole species, were hydrolyzed at a similar rate as N-linoleoyl-PE, and many of the other NALPEs showed intermediate rates of hydrolysis. These results significantly expand the substrate repertoire of NAPE-PLD and suggest that it may play an important role in clearing products of lipid peroxidation in addition to its established role in the biosynthesis of N-acyl-ethanolamines.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.