{"title":"RNA-Seq揭示了紫花苜蓿在PEG胁迫下内源性no诱导的激素信号转导和碳代谢。","authors":"Ying Zhao, Xiaofang Zhang, Yizhen Wang, Qian Ruan, Baoqiang Wang, Xiaoyue Wen, Xiaohong Wei","doi":"10.1186/s12864-025-11706-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alfalfa (Medicago sativa L.) has the benefits of high yield and nutritional value as a sustainable forage. However, the water deficit significantly limits its growth and yield performance. Nitric oxide (NO) is a signal molecule that can enhance plant tolerance. The majority of previous studies focus on the role of exogenous NO in plant tolerance. However, the underlying mechanism of endogenous NO in alfalfa drought tolerance remains largely unexplored.</p><p><strong>Results: </strong>To explore the mechanism of the endogenous NO-mediated water deficit resistance in the alfalfa, seedlings were exposed to polyethylene glycol 6000 (PEG) and NO scavenger (cPTIO). Results showed that PEG treatment significantly augmented alfalfa endogenous NO, MDA, O<sub>2</sub><sup>·-</sup>, and H<sub>2</sub>O<sub>2</sub> levels. In parallel, eliminating endogenous NO under PEG stress (PEG-NO) significantly diminished NO level, exacerbated MDA and reactive oxygen species accumulation, and decreased the activities of key enzymes involved in carbon fixation and TCA cycle, such as Rubisco, FBA, PDH, α-KGDH, and SDH, as well as reduced ABA and IAA content in alfalfa leaves. RNA-Seq and bioinformatics analysis suggested that endogenous NO-responsive DEGs primarily relate to carbon metabolism and hormone signal transduction. In further studies of these DEGs, we speculated that GH3, SAUR, SnRK2, and ABF genes and FBA, GAPDH, SBP, and CS are critical genes in response to endogenous NO under PEG stress.</p><p><strong>Conclusions: </strong>In summary, our study innovatively proposes a mechanism model of how endogenous NO enhances alfalfa tolerance to water deficiency at the physiological and molecular levels. The novel candidate genes can give genetic resources for the subsequent molecular-assisted breeding of drought-resistant alfalfa crops.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"523"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101008/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNA-Seq uncovers endogenous NO-induced hormone signal transduction and carbon metabolism in response to PEG stress in alfalfa.\",\"authors\":\"Ying Zhao, Xiaofang Zhang, Yizhen Wang, Qian Ruan, Baoqiang Wang, Xiaoyue Wen, Xiaohong Wei\",\"doi\":\"10.1186/s12864-025-11706-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Alfalfa (Medicago sativa L.) has the benefits of high yield and nutritional value as a sustainable forage. However, the water deficit significantly limits its growth and yield performance. Nitric oxide (NO) is a signal molecule that can enhance plant tolerance. The majority of previous studies focus on the role of exogenous NO in plant tolerance. However, the underlying mechanism of endogenous NO in alfalfa drought tolerance remains largely unexplored.</p><p><strong>Results: </strong>To explore the mechanism of the endogenous NO-mediated water deficit resistance in the alfalfa, seedlings were exposed to polyethylene glycol 6000 (PEG) and NO scavenger (cPTIO). Results showed that PEG treatment significantly augmented alfalfa endogenous NO, MDA, O<sub>2</sub><sup>·-</sup>, and H<sub>2</sub>O<sub>2</sub> levels. In parallel, eliminating endogenous NO under PEG stress (PEG-NO) significantly diminished NO level, exacerbated MDA and reactive oxygen species accumulation, and decreased the activities of key enzymes involved in carbon fixation and TCA cycle, such as Rubisco, FBA, PDH, α-KGDH, and SDH, as well as reduced ABA and IAA content in alfalfa leaves. RNA-Seq and bioinformatics analysis suggested that endogenous NO-responsive DEGs primarily relate to carbon metabolism and hormone signal transduction. In further studies of these DEGs, we speculated that GH3, SAUR, SnRK2, and ABF genes and FBA, GAPDH, SBP, and CS are critical genes in response to endogenous NO under PEG stress.</p><p><strong>Conclusions: </strong>In summary, our study innovatively proposes a mechanism model of how endogenous NO enhances alfalfa tolerance to water deficiency at the physiological and molecular levels. The novel candidate genes can give genetic resources for the subsequent molecular-assisted breeding of drought-resistant alfalfa crops.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"26 1\",\"pages\":\"523\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-025-11706-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11706-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
RNA-Seq uncovers endogenous NO-induced hormone signal transduction and carbon metabolism in response to PEG stress in alfalfa.
Background: Alfalfa (Medicago sativa L.) has the benefits of high yield and nutritional value as a sustainable forage. However, the water deficit significantly limits its growth and yield performance. Nitric oxide (NO) is a signal molecule that can enhance plant tolerance. The majority of previous studies focus on the role of exogenous NO in plant tolerance. However, the underlying mechanism of endogenous NO in alfalfa drought tolerance remains largely unexplored.
Results: To explore the mechanism of the endogenous NO-mediated water deficit resistance in the alfalfa, seedlings were exposed to polyethylene glycol 6000 (PEG) and NO scavenger (cPTIO). Results showed that PEG treatment significantly augmented alfalfa endogenous NO, MDA, O2·-, and H2O2 levels. In parallel, eliminating endogenous NO under PEG stress (PEG-NO) significantly diminished NO level, exacerbated MDA and reactive oxygen species accumulation, and decreased the activities of key enzymes involved in carbon fixation and TCA cycle, such as Rubisco, FBA, PDH, α-KGDH, and SDH, as well as reduced ABA and IAA content in alfalfa leaves. RNA-Seq and bioinformatics analysis suggested that endogenous NO-responsive DEGs primarily relate to carbon metabolism and hormone signal transduction. In further studies of these DEGs, we speculated that GH3, SAUR, SnRK2, and ABF genes and FBA, GAPDH, SBP, and CS are critical genes in response to endogenous NO under PEG stress.
Conclusions: In summary, our study innovatively proposes a mechanism model of how endogenous NO enhances alfalfa tolerance to water deficiency at the physiological and molecular levels. The novel candidate genes can give genetic resources for the subsequent molecular-assisted breeding of drought-resistant alfalfa crops.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.