凸性的操作理论

IF 0.6 4区 数学 Q3 MATHEMATICS
Redi Haderi, Cihan Okay, Walker H. Stern
{"title":"凸性的操作理论","authors":"Redi Haderi,&nbsp;Cihan Okay,&nbsp;Walker H. Stern","doi":"10.1007/s10485-025-09809-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present an operadic characterization of convexity utilizing a PROP which governs convex structures and derive several convex Grothendieck constructions. Our main focus is a Grothendieck construction which simultaneously captures convex structures and monoidal structures on categories. Our proof of this Grothendieck construction makes heavy use of both our operadic characterization of convexity and operads governing monoidal structures. We apply these new tools to two key concepts: entropy in information theory and quantum contextuality in quantum foundations. In the former, we explain that Baez, Fritz, and Leinster’s categorical characterization of entropy has a more natural formulation in terms of continuous, convex-monoidal functors out of convex Grothendieck constructions; and in the latter we show that certain convex monoids used to characterize contextual distributions naturally arise as convex Grothendieck constructions.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"33 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Operadic Theory of Convexity\",\"authors\":\"Redi Haderi,&nbsp;Cihan Okay,&nbsp;Walker H. Stern\",\"doi\":\"10.1007/s10485-025-09809-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present an operadic characterization of convexity utilizing a PROP which governs convex structures and derive several convex Grothendieck constructions. Our main focus is a Grothendieck construction which simultaneously captures convex structures and monoidal structures on categories. Our proof of this Grothendieck construction makes heavy use of both our operadic characterization of convexity and operads governing monoidal structures. We apply these new tools to two key concepts: entropy in information theory and quantum contextuality in quantum foundations. In the former, we explain that Baez, Fritz, and Leinster’s categorical characterization of entropy has a more natural formulation in terms of continuous, convex-monoidal functors out of convex Grothendieck constructions; and in the latter we show that certain convex monoids used to characterize contextual distributions naturally arise as convex Grothendieck constructions.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"33 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-025-09809-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-025-09809-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用一个控制凸结构的PROP给出了凸性的一个运算特征,并推导了几个凸Grothendieck结构。我们主要关注的是格罗腾迪克结构,它同时捕捉凸结构和单形结构的类别。我们对这种格罗滕迪克构造的证明大量使用了我们的凸性运算符和控制单形结构的运算符。我们将这些新工具应用于两个关键概念:信息论中的熵和量子基础中的量子上下文。在前者中,我们解释了Baez, Fritz和Leinster的熵的分类表征在凸Grothendieck结构的连续凸单形函子方面具有更自然的表述;在后者中,我们证明了用于表征上下文分布的某些凸单群自然地产生为凸格罗滕迪克结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Operadic Theory of Convexity

In this paper, we present an operadic characterization of convexity utilizing a PROP which governs convex structures and derive several convex Grothendieck constructions. Our main focus is a Grothendieck construction which simultaneously captures convex structures and monoidal structures on categories. Our proof of this Grothendieck construction makes heavy use of both our operadic characterization of convexity and operads governing monoidal structures. We apply these new tools to two key concepts: entropy in information theory and quantum contextuality in quantum foundations. In the former, we explain that Baez, Fritz, and Leinster’s categorical characterization of entropy has a more natural formulation in terms of continuous, convex-monoidal functors out of convex Grothendieck constructions; and in the latter we show that certain convex monoids used to characterize contextual distributions naturally arise as convex Grothendieck constructions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信