{"title":"空间周期环境下双稳抛物方程的传播现象","authors":"Zhuo Ma , Zhen-Hui Bu , Fu-Jie Jia","doi":"10.1016/j.chaos.2025.116559","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to studying the following spatially periodic reaction–diffusion equation with bistable nonlinearity: <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></mrow></math></span></span></span>We investigate the effect of spatial heterogeneity on the propagation phenomenon of parabolic equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. As a special entire solution, traveling waves play a significant role in studying the dynamic behavior of reaction–diffusion equations. However, the study of bistable traveling waves in heterogeneous environments is relatively late and sparse. In the present paper, we first establish the uniqueness of wave speed by making use of sub- and super-solution method and comparison principle. Then, based on the uniqueness, the spreading speed is investigated within the framework of the dynamical system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"198 ","pages":"Article 116559"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation phenomenon for bistable parabolic equation in space-periodic environment\",\"authors\":\"Zhuo Ma , Zhen-Hui Bu , Fu-Jie Jia\",\"doi\":\"10.1016/j.chaos.2025.116559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to studying the following spatially periodic reaction–diffusion equation with bistable nonlinearity: <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></mrow></math></span></span></span>We investigate the effect of spatial heterogeneity on the propagation phenomenon of parabolic equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. As a special entire solution, traveling waves play a significant role in studying the dynamic behavior of reaction–diffusion equations. However, the study of bistable traveling waves in heterogeneous environments is relatively late and sparse. In the present paper, we first establish the uniqueness of wave speed by making use of sub- and super-solution method and comparison principle. Then, based on the uniqueness, the spreading speed is investigated within the framework of the dynamical system.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"198 \",\"pages\":\"Article 116559\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925005727\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925005727","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Propagation phenomenon for bistable parabolic equation in space-periodic environment
This paper is devoted to studying the following spatially periodic reaction–diffusion equation with bistable nonlinearity: We investigate the effect of spatial heterogeneity on the propagation phenomenon of parabolic equations in . As a special entire solution, traveling waves play a significant role in studying the dynamic behavior of reaction–diffusion equations. However, the study of bistable traveling waves in heterogeneous environments is relatively late and sparse. In the present paper, we first establish the uniqueness of wave speed by making use of sub- and super-solution method and comparison principle. Then, based on the uniqueness, the spreading speed is investigated within the framework of the dynamical system.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.