Yannick H. A. Leurs, Sanne N. Giezen, Yudong Li, Willem van den Hout, Jay Beeren, Linn J. M. van den Aker, Ilja K. Voets, Jan C. M. van Hest, Luc Brunsveld
{"title":"利用动态蛋白质插入稳定凝结水界面","authors":"Yannick H. A. Leurs, Sanne N. Giezen, Yudong Li, Willem van den Hout, Jay Beeren, Linn J. M. van den Aker, Ilja K. Voets, Jan C. M. van Hest, Luc Brunsveld","doi":"10.1021/jacs.5c03740","DOIUrl":null,"url":null,"abstract":"Coacervates have been widely used to mimic membraneless organelles (MLOs). However, coacervates without a membrane or stabilizing surface do not feature the same level of stability as MLOs. This study shows that specifically engineered surface-active proteins can interact with the interface of polypeptide coacervates, conferring resistance to coacervate dissolution and fusion. Modulating the molecular characteristics of these coacervate stabilizing proteins highlighted that their dimerization aids in achieving effective interface stabilizers. Cryo-TEM imaging showed a densely packed protein monolayer at the coacervate-liquid interface, while single-molecule super-resolution microscopy captured the dynamic nature of this protein layer, with the proteins rapidly (un)docking and moving across the coacervate interface within milliseconds. These findings suggest a dynamic form of coacervate stabilization driven by transient protein interactions at the condensate interface. This unique form of coacervate stabilization not only provides a new approach to developing stable and dynamically exchanging synthetic condensate systems but, as model systems, can also significantly contribute to our understanding of the mechanisms underlying the temporal stability of MLOs in nature.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"59 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of Condensate Interfaces Using Dynamic Protein Insertion\",\"authors\":\"Yannick H. A. Leurs, Sanne N. Giezen, Yudong Li, Willem van den Hout, Jay Beeren, Linn J. M. van den Aker, Ilja K. Voets, Jan C. M. van Hest, Luc Brunsveld\",\"doi\":\"10.1021/jacs.5c03740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coacervates have been widely used to mimic membraneless organelles (MLOs). However, coacervates without a membrane or stabilizing surface do not feature the same level of stability as MLOs. This study shows that specifically engineered surface-active proteins can interact with the interface of polypeptide coacervates, conferring resistance to coacervate dissolution and fusion. Modulating the molecular characteristics of these coacervate stabilizing proteins highlighted that their dimerization aids in achieving effective interface stabilizers. Cryo-TEM imaging showed a densely packed protein monolayer at the coacervate-liquid interface, while single-molecule super-resolution microscopy captured the dynamic nature of this protein layer, with the proteins rapidly (un)docking and moving across the coacervate interface within milliseconds. These findings suggest a dynamic form of coacervate stabilization driven by transient protein interactions at the condensate interface. This unique form of coacervate stabilization not only provides a new approach to developing stable and dynamically exchanging synthetic condensate systems but, as model systems, can also significantly contribute to our understanding of the mechanisms underlying the temporal stability of MLOs in nature.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c03740\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03740","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stabilization of Condensate Interfaces Using Dynamic Protein Insertion
Coacervates have been widely used to mimic membraneless organelles (MLOs). However, coacervates without a membrane or stabilizing surface do not feature the same level of stability as MLOs. This study shows that specifically engineered surface-active proteins can interact with the interface of polypeptide coacervates, conferring resistance to coacervate dissolution and fusion. Modulating the molecular characteristics of these coacervate stabilizing proteins highlighted that their dimerization aids in achieving effective interface stabilizers. Cryo-TEM imaging showed a densely packed protein monolayer at the coacervate-liquid interface, while single-molecule super-resolution microscopy captured the dynamic nature of this protein layer, with the proteins rapidly (un)docking and moving across the coacervate interface within milliseconds. These findings suggest a dynamic form of coacervate stabilization driven by transient protein interactions at the condensate interface. This unique form of coacervate stabilization not only provides a new approach to developing stable and dynamically exchanging synthetic condensate systems but, as model systems, can also significantly contribute to our understanding of the mechanisms underlying the temporal stability of MLOs in nature.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.